(2012•銅仁地區(qū))為了抓住梵凈山文化藝術節(jié)的商機,某商店決定購進A、B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
分析:(1)關系式為:A種紀念品8件需要錢數(shù)+B種紀念品3件錢數(shù)=950;A種紀念品5件需要錢數(shù)+B種紀念品6件需要錢數(shù)=800;
(2)關系式為:用于購買這100件紀念品的資金不少于7500元,但不超過7650元,得出不等式組求出即可;
(3)計算出各種方案的利潤,比較即可.
解答:解:(1)設該商店購進一件A種紀念品需要a元,購進一件B種紀念品需要b元,
根據題意得方程組得:
8a+3b=950
5a+6b=800
,…2分
解方程組得:
a=100
b=50

∴購進一件A種紀念品需要100元,購進一件B種紀念品需要50元…4分;

(2)設該商店購進A種紀念品x個,則購進B種紀念品有(100-x)個,
100x+50(100-x)≥7500
100x+50(100-x)≤7650
,…6分
解得:50≤x≤53,…7分
∵x 為正整數(shù),x=50,51,52,53
∴共有4種進貨方案,
分別為:方案1:商店購進A種紀念品50個,則購進B種紀念品有50個;
方案2:商店購進A種紀念品51個,則購進B種紀念品有49個;
方案3:商店購進A種紀念品52個,則購進B種紀念品有48個;
方案4:商店購進A種紀念品53個,則購進B種紀念品有47個.…8分;

(3)因為B種紀念品利潤較高,故B種數(shù)量越多總利潤越高,
因此選擇購A種50件,B種50件.…10分
總利潤=50×20+50×30=2500(元)
∴當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元.…12分
點評:此題主要考查了二元一次方程組的應用以及一元一次方程的應用,找到相應的關系式是解決問題的關鍵,注意第二問應求得整數(shù)解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•銅仁地區(qū))某中學足球隊的18名隊員的年齡情況如下表:
年齡(單位:歲) 14 15 16 17 18
人數(shù) 3 6 4 4 1
則這些隊員年齡的眾數(shù)和中位數(shù)分別是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•銅仁地區(qū))如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•銅仁地區(qū))以邊長為2的正方形的中心O為端點,引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點,則線段AB的最小值是
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•銅仁地區(qū))(1)化簡:(
1
x+1
-
1
x-1
2
x2-1
;
(2)某市計劃在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示,請在原圖上利用尺規(guī)作圖作出音樂噴泉M的位置,(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•銅仁地區(qū))如圖,已知⊙O的直徑AB與弦CD相交于點E,AB⊥CD,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF;
(2)若⊙O的半徑為5,cos∠BCD=
45
,求線段AD的長.

查看答案和解析>>

同步練習冊答案