如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為( 。

 

A.

B.

3

C.

1

D.

考點(diǎn):

翻折變換(折疊問題)

分析:

首先利用勾股定理計(jì)算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.

解答:

解:∵AB=3,AD=4,

∴DC=3,

∴AC==5,

根據(jù)折疊可得:△DEC≌△D′EC,

∴D′C=DC=3,DE=D′E,

設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,

在Rt△AED′中:(AD′)2+(ED′)2=AE2,

22+x2=(4﹣x)2,

解得:x=,

故選:A.

點(diǎn)評:

此題主要考查了圖形的翻著變換,以及勾股定理的應(yīng)用,關(guān)鍵是掌握折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,將長方形紙片折疊,使A點(diǎn)落BC上的F處,折痕為BE,若沿EF剪下,則折疊部分是一個(gè)正方形,其數(shù)學(xué)原理是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,將長方形紙片的一角折疊,使頂點(diǎn)A落在A′處,EF為折痕,再將另一角折疊,使頂點(diǎn)B落在EA′上的B′點(diǎn)處,折痕為EG,則∠FEG等于
90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將長方形紙片的一角折疊,使頂點(diǎn)A落在點(diǎn)A′處,BC為折痕,若BE是∠A′BD的角平分線,求∠CBE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將長方形紙片的一角斜折,使頂點(diǎn)A落在A′處,EF為折痕;再將另一角斜折,使頂點(diǎn)B落在EA′上B′點(diǎn)處,折痕為EG;觀察并估計(jì)∠FEG=
90°
90°
.再測量進(jìn)行驗(yàn)證.你能說出理由嗎?若被折角∠AEF=30°,求∠A′EB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將長方形紙片ABCD沿對角線AC折疊,使點(diǎn)B落在點(diǎn)B′處,CB′交AD于點(diǎn)M.試說明△AMC的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案