化簡:
13+2
5
+2
7
+2
35
,
分析:被開方數(shù)中含有三個不同的根式,且系數(shù)都是2,可以看成是將
x
+
y
+
z
平方得來的,因此可用待定系數(shù)法來化簡.
解答:解:設(shè)
13+2
5
+2
7
+2
35
=
x
+
y
+
z
,
兩邊平方得
13+2
5
+2
7
+2
35
=x+y+z+2
xy
+2
yz
+2
zx

x+y+z=13,①
xy=5,②
yz=7,③
zx=35,④

②×③×④得
(xyz)2=5×7×35=352
因為x,y,z均非負,所以xyz≥0,所以
xyz=35.⑤
⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z顯然滿足①,
所以,原式=1+
5
+
7
點評:本題考查了二次根式的性質(zhì)與化簡方法,由于復(fù)合二次根式的被開方數(shù)復(fù)雜,可以通過設(shè)未知數(shù),利用平方法解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.在進行二次根式去除時,我們有時會碰上如
5
3
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
5
5
×
5
=
3
5
5
(一)
2
3
=
2×3
3×3
=
6
3
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=
 
;
②參照(四)式得
2
5
+
3
=
 

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式化簡時,我們有時會碰上如
2
5
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
2
5
=
5
5
×
5
=
2
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
;(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)2-12
=
3
-1。ㄈ
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)2-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1(四)
(1)請用以下指定的方法化簡
2
2009
+
2007
(2).
參照(三)式化簡
2
2009
+
2007
;
參照(四)式化簡
2
2009
+
2007

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在進行二次根式化簡時,我們有時會碰上如
5
3
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
3
3
×
3
=
5
3
3
2
3
=
2×3
3×3
=
6
3
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2×(
3
-1)
(
3
)
2
-12
=
3
-1

以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

(1)請用不同的方法化簡
2
5
+
3
;
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

化簡:
13+2
5
+2
7
+2
35
,

查看答案和解析>>

同步練習(xí)冊答案