【題目】如圖,將邊長為a與b、對角線長為c的長方形紙片ABCD,繞點C順時針旋轉90°得到長方形FGCE,連接AF.通過用不同方法計算梯形ABEF的面積可驗證勾股定理,請你寫出驗證的過程.

【答案】a2+b2=c2

【解析】

試題分析:根據(jù)S梯形ABEF=SABC+SCEF+SACF,利用三角形以及梯形的面積公式即可證明.

證明:S梯形ABEF=(EF+AB)BE=(a+b)(a+b)=(a+b)2,

RtCDARtCGF,

∴∠ACD=CFG,

∵∠CFG+GCF=90°,

∴∠ACD+GCF=90°,

ACF=90°,

S梯形ABEF=SABC+SCEF+SACF

S梯形ABEF=ab+ab+c2,

(a+b)2=ab+ab+c2

a2+2ab+b2=2ab+c2,

a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司在埃及新投產一座雞飼料廠,年生產飼料可飼養(yǎng)57000000只肉雞,這個數(shù)據(jù)用科學記數(shù)法可表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程(或方程組)解應用題:

(1)某服裝店到廠家選購甲、乙兩種服裝,若購進甲種服裝9件、乙種服裝10件,需1810元;購進甲種服裝11件乙種服裝8件,需1790元,求甲乙兩種服裝每件價格相差多少元?

(2)某工廠現(xiàn)庫存某種原料1200噸,用來生產A、B兩種產品,每生產1噸A產品需這種原料2噸、生產費用1000元;每生產1噸B產品需這種原料2.5噸、生產費用900元,如果用來生產這兩種產品的資金為53萬元,那么A、B兩種產品各生產多少噸才能使庫存原料和資金恰好用完?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有9名同學報名參加科技競賽,學校通過測試取前4名參加決賽,測試成績各不相同,小英已經知道了自己的成績,她想知道自己能否參加決賽,還需要知道這9名同學測試成績的(

A. 中位數(shù) B. 平均數(shù) C. 眾數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句中正確的個數(shù)為______.

(1)延長射線OA到點B;

(2)直線AB比射線CD長;

(3)線段AB就是A、B兩點間的距離;

(4)角的大小與角兩邊的長度無關.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,y關于x的二次函數(shù)y=﹣(x+m)(x﹣3m)圖象的頂點為M,圖象交x軸于A、B兩點,交y軸正半軸于D點.以AB為直徑作圓,圓心為C.定點E的坐標為(﹣3,0),連接ED.(m>0)

(1)寫出A、B、D三點的坐標;

(2)當m為何值時M點在直線ED上?判定此時直線與圓的位置關系;

(3)當m變化時,用m表示AED的面積S,并在給出的直角坐標系中畫出S關于m的函數(shù)圖象的示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數(shù),則圖中以A,B,C,D這四點中任意兩點為端點的所有線段長度之和可能是( )

A.28 B.29 C.30 D.31

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件不能判斷ABC是直角三角形的是(

A. B=50° ,C=40° B. B=C=45

C. A,B,C的度數(shù)比為5:3:2 D. A-B=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中高AD恰好平分邊BC,B=30°,點P是BA延長線上一點,點O是線段AD上一點且OP=OC,下面的結論:

①AC=AB;②APO+DCO=30°;③OPC是等邊三角形;④AC=AO+AP.

其中正確的為( )

A.①②③ B.①②④ C.①③④ D.①②③④

查看答案和解析>>

同步練習冊答案