【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個根為﹣
其中正確的結(jié)論個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】解:
由圖象開口向下,可知a<0,
與y軸的交點在x軸的下方,可知c<0,
又對稱軸方程為x=2,所以﹣ >0,所以b>0,
∴abc>0,故①正確;
由圖象可知當(dāng)x=3時,y>0,
∴9a+3b+c>0,故②錯誤;
由圖象可知OA<1,
∵OA=OC,
∴OC<1,即﹣c<1,
∴c>﹣1,故③正確;
假設(shè)方程的一個根為x=﹣ ,把x=﹣ 代入方程可得 ﹣ +c=0,
整理可得ac﹣b+1=0,
兩邊同時乘c可得ac2﹣bc+c=0,
即方程有一個根為x=﹣c,
由②可知﹣c=OA,而當(dāng)x=OA是方程的根,
∴x=﹣c是方程的根,即假設(shè)成立,故④正確;
綜上可知正確的結(jié)論有三個,
故答案為:C.
拋物線開口由a決定,9a+3b+c可由x=3時的函數(shù)值看出,由OA=OC可知OA=-c,由圖像知ax2+bx+c=0(a≠0)有一個根為-c,由根與系數(shù)關(guān)系得-cx2=,另一個根為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= 的圖象經(jīng)過點(﹣ ,2),則函數(shù)y=kx﹣2的圖象不經(jīng)過第幾象限( )
A.一
B.二
C.三
D.四
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10,AD=16,∠A=60°,P是射線AD上一點,連接PB,沿PB將△APB折疊,得到△A′PB.
(1)如圖2所示,當(dāng)PA′⊥BC時,求線段PA的長度.
(2)當(dāng)∠DPA′=10°時,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號召,幸福商場用3300元購進甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進價、售價如下表:
進價(元/只) | 售價(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進了多少只?
(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________________ ),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,分別為邊的中點,是對角線,過點作交的延長線于點.
(1)求證:.
(2)若,
①求證:四邊形是菱形.
②當(dāng)時,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,LA,LB分別表示A步行與B騎車在同一路上行駛的路程y(千米)與時間x(小時)的關(guān)系.根據(jù)圖象,回答下列問題:
(1)B出發(fā)時與A相距 千米.
(2)B騎車一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時.
(3)B出發(fā)后 小時與A相遇.
(4)求出A行走的路程y與時間x的函數(shù)關(guān)系式.(寫出過程)
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度勻速行駛,A,B肯定會提前相遇.在圖中畫出這種假設(shè)情況下B騎車行駛過程中路程y與時間x的函數(shù)圖象,在圖中標出這個相遇點P,并回答相遇點P離B的出發(fā)點O相距多少千米.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點在軸的負半軸上,直線交軸于點,邊交軸于點.
(1)如圖1,求直線的解析式;
(2)如圖2,連接,動點從點出發(fā),沿線段方向以1個單位/秒的速度向終點勻速運動,設(shè)的面積為(),點的運動時間為秒,求與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com