(2007•資陽(yáng))如圖1,在等邊△ABC中,AD⊥BC于點(diǎn)D,一個(gè)直徑與AD相等的圓與BC相切于點(diǎn)E、與AB相切于點(diǎn)F,連接EF.
(1)判斷EF與AC的位置關(guān)系(不必說(shuō)明理由);
(2)如圖2,過(guò)E作BC的垂線,交圓于G,連接AG,判斷四邊形ADEG的形狀,并說(shuō)明理由;
(3)求證:AC與GE的交點(diǎn)O為此圓的圓心.

【答案】分析:(1)根據(jù)∠EFB與∠FEB都是弦切角,可得△ABC是等邊三角形,∠ABC=∠BAC=∠ACB=60°,即△BFE為等邊三角形,所以求得∠BAC=∠BFE,∠BCA=∠BEF,可證明EF∥AC;
(2)根據(jù)圓切BC于E,EG為直徑,AD=EG,AD⊥BC,可判定四邊形ADEG為矩形;
(3)由(1)(2)的結(jié)論,證明AC垂直平分FG;再根據(jù)垂徑定理,可知AC必過(guò)圓心,又EG為直徑,所以AC與GE的交點(diǎn)O為此圓的圓心.
解答:(1)解:EF∥AC;

(2)解:四邊形ADEG為矩形;
理由:
∵EG⊥BC,E為切點(diǎn),
∵BC為圓O的切線,
∴EG為直徑,
∴EG=AD;
又∵AD⊥BC,EG⊥BC,
∴AD∥EG,
由EG=AD,AD∥EG,
得出四邊形ADEG為平行四邊形,
∵∠ADE=90°,
∴平行四邊形ADEG為矩形;

(3)證明:連接FG,由(2)可知EG為直徑,
∴FG⊥EF;
又由(1)可知EF∥AC,
∴AC⊥FG;
又∵四邊形ADEG為矩形,
∴EG⊥AG,
∴AG是已知圓的切線;
∵AF=AG,
∴AC是FG的垂直平分線,故AC必過(guò)圓心,(從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線,平分兩條切線的夾角,根據(jù)等腰三角形三線合一定理即可得出AC垂直平分FG)
∴圓心O就是AC與EG的交點(diǎn).
點(diǎn)評(píng):本題綜合考查了切線的性質(zhì)和垂徑定理.要熟練掌握矩形的判定和圓中的有關(guān)性質(zhì)才能靈活的解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•資陽(yáng))如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
圖象的兩個(gè)交點(diǎn):
(1)求點(diǎn)B的坐標(biāo)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省珠海市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在x軸的正半軸上),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F、G分別在線段BC、AC上,拋物線P上部分點(diǎn)的橫坐標(biāo)對(duì)應(yīng)的縱坐標(biāo)如下:
x-3-212
y-4
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=k•DF,若點(diǎn)M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省襄樊市?悼h城關(guān)鎮(zhèn)中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在x軸的正半軸上),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F、G分別在線段BC、AC上,拋物線P上部分點(diǎn)的橫坐標(biāo)對(duì)應(yīng)的縱坐標(biāo)如下:
x-3-212
y-4
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=k•DF,若點(diǎn)M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年河北省石家莊市第42中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn):
(1)求點(diǎn)B的坐標(biāo)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn):
(1)求點(diǎn)B的坐標(biāo)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案