如圖,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm,以點C為圓心,以3cm長為半徑作圓,則⊙C與AB的位置關系是______.
過C作CD⊥AB,垂足為D,
∵∠C=90°,∠A=60°,
∴∠B=30°,
∵BC=4cm,
∴CD=2cm,
∵2<3,
∴⊙C與直線AB相交.
故答案為:相交.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA、PB切⊙O于A、B,∠APB=60゜,PA=4,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線AP是⊙O的切線,點P為切點,∠APQ=∠CPQ,則圖中與CQ相等的線段是( 。
A.PQB.PBC.PCD.BQ

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O,交AB于D,E為BC中點,連ED.
(1)求證:ED是⊙O的切線;
(2)若⊙O半徑為3,ED=4,求AB長?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB=6
2
,O為AB的中點,AC,BD都是半徑為3的⊙O的切線,C,D為切點,則
CD
的長為( 。
A.
3
2
π
B.
3
4
π
C.3
2
D.3π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點T,與AQ相交于兩點B、C.
(1)BT是否平分∠OBA?證明你的結(jié)論;
(2)若已知AT=4,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖:△ABC中,∠C=90°,AC=8cm,AB=10cm,點P由點C出發(fā)以每秒2cm的速度沿線段CA向點A運動(不運動到A點),⊙O的圓心在BP上,且⊙O分別與AB、AC相切,當點P運動2秒鐘時,⊙O的半徑是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD為直徑作⊙O1交AD于點E,過點E作EF⊥AB于點F.建立如圖所示的平面直角坐標系,已知A、B兩點坐標分別為A(2,0),B(0,2
3
).
(1)求C,D兩點的坐標;
(2)求證:EF為⊙O1的切線;
(3)線段CD上是否存在點P,使以點P為圓心,PD為半徑的⊙P與y軸相切.如果存在,請求出P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,∠BAC=30°.
(1)求∠P的大。
(2)若AB=6,求PA的長.

查看答案和解析>>

同步練習冊答案