【題目】定義:若點P(a,b)在函數(shù)y= 的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個“派生函數(shù)”.例如:點(2, )在函數(shù)y= 的圖象上,則函數(shù)y=2x2+x稱為函數(shù)y= 的一個“派生函數(shù)”.現(xiàn)給出以下兩個命題:(1)存在函數(shù)y= 的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè);(2)函數(shù)y= 的所有“派生函數(shù)”的圖象都經(jīng)過同一點.下列判斷正確的是( )
A.命題(1)與命題(2)都是真命題
B.命題(1)與命題(2)都是假命題
C.命題(1)是假命題,命題(2)是真命題
D.命題(1)是真命題,命題(2)是假命題

【答案】C
【解析】解:(1) ∵P(a,b)在y=上,
∴a和b同號,
∴對稱軸在y軸左側(cè),
∴存在函數(shù)y=的一個“派生函數(shù)”,其圖像的對稱軸在y軸的右側(cè)是假命題。
(2) ∵函數(shù)y=的所有“派生函數(shù)”為y=a+bx,
∴x=0時,y=0,
∴所有的“派生函數(shù)”為y=a+bx經(jīng)過原點,
∴y=的所有“”派生函數(shù)的圖像都經(jīng)過同一點是真命題。
故選C。
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)和命題與定理的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的逆命題;經(jīng)過證明被確認(rèn)正確的命題叫做定理才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點P,頂點為C(1,﹣2).

(1)求此函數(shù)的關(guān)系式;
(2)作點C關(guān)于x軸的對稱點D,順次連接A,C,B,D.若在拋物線上存在點E,使直線PE將四邊形ACBD分成面積相等的兩個四邊形,求點E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點F,使得△PEF是以P為直角頂點的直角三角形?若存在,求出點F的坐標(biāo)及△PEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,巳知該山坡的坡度i(即tan∠ABC)為1: ,點P,H,B,C,A在同一個平面上,點H、B、C在同一條直線上,且PH丄HC.

(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求A、B兩點間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊BC、CD上的點,BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時針方向旋轉(zhuǎn)到△BCF,旋轉(zhuǎn)角為α( 0°<α<180°),則∠α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y= x﹣3與反比例函數(shù) 的圖象相交于點A(4,n),與 軸相交于點B.

(1)填空:n的值為 , k的值為
(2)以AB為邊作菱形ABCD,使點C在 軸正半軸上,點D在第一象限,求點D的坐標(biāo);
(3)考察反比函數(shù) 的圖象,當(dāng) 時,請直接寫出自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公交總站(A點)與B、C兩個站點的位置如圖所示,已知AC=6km,∠B=30°,∠C=15°,求B站點離公交總站的距離即AB的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個一次函數(shù)y=k1x+b1和y=k2x+b2滿足k1=k2 , b1≠b2 , 那么稱這兩個一次函數(shù)為“平行一次函數(shù)”. 如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點,一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”

(1)若函數(shù)y=kx+b的圖象過點(3,1),求b的值;
(2)若函數(shù)y=kx+b的圖象與兩坐標(biāo)軸圍成的三角形和△AOB構(gòu)成位似圖形,位似中心為原點,位似比為1:2,求函數(shù)y=kx+b的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x、y滿足2x4y=8,當(dāng)0≤x≤1時,y的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案