【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人:
(1)第一輪后患病的人數(shù)為 ;(用含x的代數(shù)式表示)
(2)在進入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.
【答案】(1)(1+x)人;(2)第二輪傳染后共會有21人患病的情況不會發(fā)生.
【解析】
(1)根據(jù)題意,開始有一人患了流感,第一輪的傳染源就是這個人,他傳染了x人,則第一輪后共有(1+x)人患了流感;
(2)第二輪傳染中,這些人中的每個人又傳染了x人,因進入第二輪傳染之前,有兩位患者被及時隔離并治愈,則第二輪后共有x-1+x(x-1)人患了流感,而此時患流感人數(shù)為21,根據(jù)這個等量關系列出方程若能求得正整數(shù)解即可會有21人患病.
解:(1)第一輪后患病的人數(shù)為(1+x)人;
(2)設在每輪傳染中一人將平均傳給x人,
根據(jù)題意得:x-1+x(x-1)=21,
整理得:x2-1=21
解得:,,
∵x1,x2都不是正整數(shù),
∴第二輪傳染后共會有21人患病的情況不會發(fā)生.
科目:初中數(shù)學 來源: 題型:
【題目】將兩個全等的等腰直角三角形擺成如圖所示的樣子(圖中的所有點,線都在同一平面內),請在圖中找出一組相似的三角形,并說明它們相似的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是⊙O的直徑,點A在EB的延長線上,弦PD⊥BE,垂足為C,連接OD,
∠AOD=∠APC.
(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是4,AP=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊內一點將繞點C按順時針方向旋轉得,連接已知.
求證:是等邊三角形;
當時,試判斷的形狀,并說明理由;
探究:當為多少度時,是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)連接BC,若點P為線段BC上的一個動點(不與點B、點C重合),過點P作直線PN⊥x軸于點N,交拋物線于點M,當△BCM面積最大時,求△BPN的周長.
(3)在(2)的條件下,當△BCM面積最大時,在拋物線的對稱軸上是否存在點Q,使△CNQ為等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉90°至圖②位置,…,以此類推,這樣連續(xù)旋轉2015次后,頂點A在整個旋轉過程中所經過的路程之和是( )
A.2015πB.3019.5πC.3018πD.3024π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=∠BPQ.
(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;
(2)如圖2,選接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,若∠NOP+2∠OPN=90°,探究直線AB與ON的位置關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).
(1)以O點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)B點的對應點B′的坐標是 ;C點的對應點C′的坐標是 ;
(3)在BC上有一點P(x,y),按(1)的方式得到的對應點P′的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)以直線BC為軸,把△ABC旋轉一周,求所得圓錐的底面圓周長.
(2)以直線AC為軸,把△ABC旋轉一周,求所得圓錐的側面積;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com