(1997•海南)如圖,⊙O與⊙O′內(nèi)切于A,⊙O′過O點,⊙O的弦AB交⊙O′于C.若⊙O的半徑為13cm,AB的長為24cm,則OC的長為
5
5
分析:根據(jù)圓周角定理以及垂徑定理得出AC=BC,∠ACO=90°,再利用勾股定理求出即可.
解答:解:由題意可得出:AO是⊙O′的直徑,
則∠ACO=90°,
∵CO⊥AB,
∴AC=BC=12cm,
∵⊙O的半徑為13cm,
∴CO=
AO2-AC 2
=5(cm).
故答案為:5.
點評:此題主要考查了相切兩圓的性質(zhì)以及垂徑定理和勾股定理,正確得出AC長和∠ACO=90°是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(1997•海南)如圖,在?ABCD中,∠A的平分線交DC于E.若DE:EC=3:1,AB的長為8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•海南)如圖,正三角ABC內(nèi)接于⊙O,已知⊙O的半徑為2cm,求陰影部分的面積(精確到0.1cm).[可供選用的數(shù)據(jù):
2
≈1.1414
3
≈1.732
,π≈3.142].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•海南)如圖,已知⊙O是梯形ABCD的外接圓,DC∥AB,過A點作⊙O的切線交CD的延長線于E.求證:AD2=DE•AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•海南)如圖,在直角坐標系xOy中,點A、B在x軸上,以AB為弦的⊙O與y軸相切于E點,E點的坐標為(0,2),AE的長為
5

(1)求A、B兩點的坐標;
(2)若D點的坐標為(0,-8),拋物線y=ax2+bx+c過D、A、B三點,求這拋物線的解析式;
(3)證明上述拋物線的頂點在⊙C上.

查看答案和解析>>

同步練習冊答案