已知:如圖,Rt△ABC中,CD是斜邊AB上的高.求證:AC2=AD·AB

 

 

【答案】

證明見解析.

【解析】

試題分析:根據(jù)相似三角形的判定定理得出△ACD∽△ABC,再根據(jù)相似三角形的對應邊成比例即可得出結論.

試題解析:∵△ABC是直角三角形,CD⊥AB,

∴∠A+∠B=90°,∠A+∠ACD=90°,

∴∠B=∠ACD,

∴△ACD∽△ABC,

∴AC2=AD•AB.

考點: 相似三角形的判定與性質

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、已知:如圖,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,試以圖中標有字母的點為端點,連接兩條線段,如果你所連接的兩條線段滿足相等,垂直或平行關系中的一種,那么請你把它寫出來并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知:如圖,Rt△ABC中,∠ACB=90°,AC=BC,點D為AB邊上一點,且不與A、B兩點重合,AE⊥AB,AE=BD,連接DE、DC.
(1)求證:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,Rt△AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負半軸上,C為OA上一點且O精英家教網(wǎng)C=OB,拋物線y=(x-2)(x-m)-(p-2)(p-m)(m、p為常數(shù)且m+2≥2p>0)經(jīng)過A、C兩點.
(1)用m、p分別表示OA、OC的長;
(2)當m、p滿足什么關系時,△AOB的面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,點E是AC的中點.
求證:∠EBD=∠EDB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,Rt△ABC中,∠C=90°,M是AB的中點,AM=AN,MN∥AC.
求證:MN=AC.

查看答案和解析>>

同步練習冊答案