53、已知:如圖,在Rt△ABC中,∠ABC=90°,以AB上的點O為圓心,OB的長為半徑的圓與AB交于點E,與AC切于點D、
(1)求證:BC=CD;
(2)求證:∠ADE=∠ABD.
分析:從切線的性質(zhì)出發(fā),通過切線與弦所夾的角與弧弦夾角相等,即得到∠CDB=∠CBA;由切線的性質(zhì)而求得.
解答:(1)證明:∵∠ABC=90°,
∴OB⊥BC、
∵OB是⊙O的半徑,
∴CB為⊙O的切線.
又∵CD切⊙O于點D,
∴BC=CD;
(2)證明:∵BE是⊙O的直徑,
∴∠BDE=90°.
∴∠ADE+∠CDB=90°.
又∵∠ABC=90°,
∴∠ABD+∠CBD=90°.
由(1)得BC=CD,
∴∠CDB=∠CBD、
∴∠ADE=∠ABD;
點評:本題考查了切線的判定和性質(zhì),從弦切角向心角之間的關(guān)系來求證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(4)設(shè)四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習(xí)冊答案