精英家教網 > 初中數學 > 題目詳情
求等腰直角三角形的一條直角邊長x作為自變量關于三角形周長l的函數關系式。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設當等腰直角三角形PMN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數關系式;
(3)當x=4(s)時,求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖示:一副三角板如圖放置,等腰直角三角形固定不動,另一塊的直角頂點放在等腰直角三角形的斜邊中點D處,且可以繞點D旋轉,在旋轉過程中,兩直角邊的交點G、H始終在邊AB、CB上,
(1)在旋轉過程中線段BG和CH大小有何關系?證明你的結論;
(2)若AB=CB=4cm,在旋轉過程中四邊形GBHD的面積是否不變?若不變,求出它的值;若變,精英家教網求出它的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.
(1)如圖①所示△ABC,△DBE,兩直角邊交于點F,過點F作FG∥BC交AB于點G,連接BF、AD,則線段BF與線段AD的數量關系是
 
;直線BF與直線AD的位置關系是
 
,并求證:FG+DC=AC;
(2)如果小華將兩塊三角板△ABC,△DBE如圖②所示擺放,使D、B、C三點在一條直線上,AC、DE的延長線相交于點F,過點F作FG∥BC,交直線AE于點G,連接AD,FB,則FG、DC、AC之間滿足的數量關系式是
 

(3)在(2)的條件下,若AG=7
2
,DC=5,將一個45°角的頂點與點B重合,并繞點B旋轉,這個角的兩邊分別交線段FG于P、Q兩點(如圖③),線段DF分別與線段BQ、BP相交于M、N兩點,若PG=2,求線段MN的長.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖(1),一正方形紙板ABCD的邊長為4,對角線AC、BD交于點O,一塊等腰直角三角形的三角板的一個頂點處于點O處,兩邊分別與線段AB、AD交于點E、F,設BE=x.
(1)若三角板的直角頂點處于點O處,如圖(2).求證:OE=OF;
(2)在(1)的條件下,若EF=2
3
,求x;
(3)若三角板的銳角頂點處于點O處,如圖(3).
①若DF=y,求y關于x的函數關系式,并寫出自變量的取值范圍;
②探究直線EF與正方形ABCD的內切圓的位置關系,并證明你的結論.
精英家教網精英家教網

查看答案和解析>>

同步練習冊答案