已知關(guān)于x的方程x2-(2k+1)x+4(k-)=0
(1)判斷方程根的情況;
(2)k為何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,并求出此時(shí)方程的根.
【答案】分析:(1)根據(jù)△=b2-4ac是大于零還是等于零還是小于零的情況來(lái)判斷方程根的情況;
(2)根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根的情況直接說(shuō)明b2-4ac=0得出(2k-3)2=0,解出k的值,再把k的值代入原式求出方程的根.
解答:,解:①∵△=(2k+1)2-4×1×4(k-)=4k2+4k+1-16k+8=4k2-12k+9=(2k-3)2≥0,
∴該方程有兩個(gè)實(shí)根;  
②若方程有兩個(gè)相等的實(shí)數(shù)根,則△=b2-4ac=0,
∴(2k-3)2=0,
解得:k=
∴k=時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;
把k=時(shí)代入原式得:
x2-(2×+1)x+4(-)=0
x2-4x+4=0,
解得:x=2;
∴方程兩根均為2.
點(diǎn)評(píng):本題是對(duì)根的判別式與根與系數(shù)關(guān)系的綜合考查,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0方程沒(méi)有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個(gè)根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng))已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無(wú)論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長(zhǎng)為a=6,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案