精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠C=90°,AC+BC=8,點O是斜邊AB上一點,以O為圓心的⊙O分別與AC,BC相切于點D,E.

(1)當AC=2時,求⊙O的半徑;
(2)設AC=x,⊙O的半徑為y,求y與x的函數關系式.

【答案】
(1)

解:(1)連接OE,OD,

在△ABC中,∠C=90°,AC+BC=8,

∵AC=2,

∴BC=6;

∵以O為圓心的⊙O分別與AC,BC相切于點D,E,

∴四邊形OECD是正方形,

tan∠B=tan∠AOD=,解得OD=

∴圓的半徑為;


(2)

解:∵AC=x,BC=8﹣x,

在直角三角形ABC中,tanB=

∵以O為圓心的⊙O分別與AC,BC相切于點D,E,

∴四邊形OECD是正方形.

tan∠AOD=tanB=,

解得y=﹣x2+x.


【解析】(1)根據切線,連接圓心和切點求半徑。
(2)構造直角三角形,利用三角函數建立方程即可得解析式。
【考點精析】通過靈活運用三角形的面積和切線的性質定理,掌握三角形的面積=1/2×底×高;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小麗為了測旗桿AB的高度,小麗眼睛距地面1.5米,小麗站在C點,測出旗桿A的仰角為30°,小麗向前走了10米到達點E,此時的仰角為60°,求旗桿的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某體育用品專賣店銷售7個籃球和9個排球的總利潤為355元,銷售10個籃球和20個排球的總利潤為650元.
(1)求每個籃球和每個排球的銷售利潤;
(2)已知每個籃球的進價為200元,每個排球的進價為160元,若該專賣店計劃用不超過17400元購進籃球和排球共100個,且要求籃球數量不少于排球數量的一半,請你為專賣店設計符合要求的進貨方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有三張卡片(形狀、大小、顏色、質地都相等),正面分別寫上整式x2+1,﹣x2﹣2,3.將這三張卡片背面向上洗勻,從中任意抽取一張卡片,記卡片上的整式為A,再從剩下的卡片中任意抽取一張,記卡片上的整式為B,于是得到代數式
(1)請用畫樹狀圖或列表的方法,寫出代數式所有可能的結果;
(2)求代數式恰好是分式的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°和60度.如果這時氣球的高度CD為90米.且點A、D、B在同一直線上,求建筑物A、B間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E在邊CD上,將該矩形沿AE折疊,使點D落在邊BC上的點F處,過點F作分、FG∥CD,交AE于點G連接DG.

(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A(,1)、B(2,0)、O(0,0),反比例函數y=圖象經過點A.

(1)求k的值
(2)將△AOB繞點O逆時針旋轉60°,得到△COD,其中點A與點C對應,試判斷點D是否在該反比例函數的圖象上?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:AB是⊙O的直徑,點P在線段AB的延長線上,BP=OB=2,點Q在⊙O上,連接PQ.
(1)如圖①,線段PQ所在的直線與⊙O相切,求線段PQ的長

(2)如圖②,線段PQ與⊙O還有一個公共點C,且PC=CQ,連接OQ,AC交于點D.
①判斷OQ與AC的位置關系,并說明理由;
②求線段PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一動點從原點出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到(0,1),(1,1),(1,0),(2,0),…那么點的坐標為__________.

查看答案和解析>>

同步練習冊答案