【題目】如圖,拋物線與軸交于A (-1,0),B (5,0)兩點,直線與y軸交于點,與軸交于點.點是x軸上方的拋物線上一動點,過點作⊥軸于點,交直線于點.設(shè)點的橫坐標為.
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點是點關(guān)于直線的對稱點,是否存在點,使點落在軸上?若存在,請直接寫出相應(yīng)的點的坐標;若不存在,請說明理由.
【答案】(1)y=-x2+4x+5.(2)m=2或m=.(3)(-,),(4,5),(3-,2-3)
【解析】
試題分析:(1)利用待定系數(shù)法求出拋物線的解析式;
(2)用含m的代數(shù)式分別表示出PE、EF,然后列方程求解;
(3)解題關(guān)鍵是識別出當四邊形PECE′是菱形,然后根據(jù)PE=CE的條件,列出方程求解;當四邊形PECE′是菱形不存在時,P點y軸上,即可得到點P坐標.
試題解析:(1)將點A、B坐標代入拋物線解析式,得:
,解得,
∴拋物線的解析式為:y=-x2+4x+5.
(2)∵點P的橫坐標為m,
∴P(m,-m2+4m+5),E(m,-m+3),F(xiàn)(m,0)
∴PE=|yP-yE|=|(-m2+4m+5)-(-m+3)|=|-m2+m+2|,
EF=|yE-yF|=|(-m+3)-0|=|-m+3|.
由題意,PE=5EF,即:|-m2+m+2|=5|-m+3|=|-m+15|
①若-m2+m+2=-m+15,整理得:2m2-17m+26=0,
解得:m=2或m=;
②若-m2+m+2=-(-m+15),整理得:m2-m-17=0,
解得:m=或m=.
由題意,m的取值范圍為:-1<m<5,故m=、m=這兩個解均舍去.
∴m=2或m=.
(3)假設(shè)存在.
作出示意圖如下:
∵點E、E′關(guān)于直線PC對稱,
∴∠1=∠2,CE=CE′,PE=PE′.
∵PE平行于y軸,∴∠1=∠3,
∴∠2=∠3,∴PE=CE,
∴PE=CE=PE′=CE′,即四邊形PECE′是菱形.
當四邊形PECE′是菱形存在時,
由直線CD解析式y(tǒng)=-x+3,可得OD=4,OC=3,由勾股定理得CD=5.
過點E作EM∥x軸,交y軸于點M,易得△CEM∽△CDO,
∴,即,解得CE=|m|,
∴PE=CE=|m|,又由(2)可知:PE=|-m2+m+2|
∴|-m2+m+2|=|m|.
①若-m2+m+2=m,整理得:2m2-7m-4=0,解得m=4或m=-;
②若-m2+m+2=-m,整理得:m2-6m-2=0,解得m1=3+,m2=3-.
由題意,m的取值范圍為:-1<m<5,故m=3+這個解舍去.
當四邊形PECE′是菱形這一條件不存在時,
此時P點橫坐標為0,E,C,E'三點重合與y軸上,菱形不存在.
綜上所述,存在滿足條件的點P,可求得點P坐標為(-,),(4,5),(3-,2-3)
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于給定的一個二次函數(shù),其圖象沿x軸翻折后,得到的圖象所對應(yīng)的二次函數(shù)稱為原二次函數(shù)的橫翻函數(shù).
(1)直接寫出二次函數(shù)y=2x2的橫翻函數(shù)的表達式.
(2)已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(﹣3,1)、B(2,6).
①求b、c的值.
②求二次函數(shù)y=x2+bx+c的橫翻函數(shù)的頂點坐標.
③若將二次函數(shù)y=x2+bx+c的圖象位于A、B兩點間的部分(含A、B兩點)記為G,則當二次函數(shù)y=﹣x2﹣bx﹣c+m與G有且只有一個交點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學觀察得出了下面四條信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,菱形紙片,對其進行如下操作:
把翻折,使得點與點重,折痕為;把翻折,使得點與點重合,折痕為 (如圖2),連結(jié).設(shè)兩條折痕的延長線交于點.
(1)請在圖2中將圖形補充完整,并求的度數(shù);
(2)四邊形是菱形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】假設(shè),企業(yè)還貸款,應(yīng)每年一還,還本息,若第一年沒還,則第一年的本息作為第二年的貸款本金計算. 華泰公司和宜興公司是分別擁有96名和100名工人的小型企業(yè),為了緩解下崗人員再就業(yè)的社會問題, 兩企業(yè)2017年1月都吸收了部分下崗人員,國家對吸收下崗人員的企業(yè)貸款給予優(yōu)惠,同時按季度(一年四個季度)給予企業(yè)補助,每季度補助費為:貸款總數(shù)×(吸收再就業(yè)人數(shù)÷企業(yè)原有人數(shù))÷25 ,按兩年計。華泰公司吸收了12名下崗人員,得到兩年期的貸款和補助費共62.4萬元資金,宜興公司也吸收了12名下崗人員,但因貸款少,得到的補助費比華泰公司的少20%,。
(1)2017年1月華泰公司得到的貸款是多少萬元?
(2)2017年1月宜興公司得到的貸款是多少萬元?
(3)假設(shè)兩公司第一年都沒還一分錢貸款和利息,而是兩年后2019年1月才還, 宜興公司歸還貸款及利息比華泰公司少12.1萬元,求國家對吸收下崗人員的企業(yè)貸款年利率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=2,CF=2,求AE和BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com