(本題滿分12分)已知拋物線x軸于A(1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,其頂點(diǎn)為D

(1)求b、c的值并寫出拋物線的對(duì)稱軸;

(2)連接BC,過(guò)點(diǎn)O作直線OEBC交拋物線的對(duì)稱軸于點(diǎn)E

求證:四邊形ODBE是等腰梯形;

(3)拋物線上是否存在點(diǎn)Q,使得△OBQ的面積等于四邊形ODBE的面積的?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

(1)x=2

(2)四邊形ODBE是等腰梯形,證明略。

(3)存在,理由略。

解析:

(1)求出:,拋物線的對(duì)稱軸為:x=2     ……3分

(2) 拋物線的解析式為,易得C點(diǎn)坐標(biāo)為(0,3),D點(diǎn)坐標(biāo)為(2,-1)

設(shè)拋物線的對(duì)稱軸DE交x軸于點(diǎn)F,易得F點(diǎn)坐標(biāo)為(2,0),連接OD,DB,BE

OBC是等腰直角三角形,DFB也是等腰直角三角形,E點(diǎn)坐標(biāo)為(2,2),

∴∠BOE= ∠OBD=   ∴OE∥BD

∴四邊形ODBE是梯形                           ……5分

中,

OD= ,BE=

∴OD= BE

∴四邊形ODBE是等腰梯形                      …7分

(3) 存在,                                            ………8分

由題意得:     ………9分

設(shè)點(diǎn)Q坐標(biāo)為(x,y),

由題意得:=

當(dāng)y=1時(shí),即,∴,

∴Q點(diǎn)坐標(biāo)為(2+,1)或(2-,1)               ……11分

當(dāng)y=-1時(shí),即,  ∴x=2,

∴Q點(diǎn)坐標(biāo)為(2,-1)

綜上所述,拋物線上存在三點(diǎn)Q(2+,1),Q (2-,1) ,Q(2,-1)

使得=.               ……12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)

已知:AB是⊙O的直徑,弦CDAB于點(diǎn)G,E是直線AB上一動(dòng)點(diǎn)(不與點(diǎn)AB、G重合),直線DE交⊙O于點(diǎn)F,直線CF交直線AB于點(diǎn)P.設(shè)⊙O的半徑為r.

(1)如圖1,當(dāng)點(diǎn)E在直徑AB上時(shí),試證明:OE·OPr2

(2)當(dāng)點(diǎn)EAB(或BA)的延長(zhǎng)線上時(shí),以如圖2點(diǎn)E的位置為例,請(qǐng)你畫出符合題意的圖形,標(biāo)注上字母,(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年濱海新區(qū)大港初中畢業(yè)生學(xué)業(yè)考試第一次模擬試卷數(shù)學(xué) 題型:解答題

(本題滿分12分)已進(jìn)入汛期,7年級(jí)1班的同學(xué)到水庫(kù)調(diào)查了解汛情。水庫(kù)一
共有10個(gè)泄洪閘,現(xiàn)在水庫(kù)水位已超過(guò)安全線,上游的河水仍以一個(gè)不變的速度流入水庫(kù)。
同學(xué)們經(jīng)過(guò)一天的觀察和測(cè)量,做了如下記錄:上午打開一個(gè)泄洪閘,在2小時(shí)內(nèi)水位繼續(xù)
上漲了0.06米;下午再打開2個(gè)泄洪閘后,4小時(shí)內(nèi)水位下降了0.1米。目前水位仍超過(guò)安
全線1.2米。
(1)如果打開5個(gè)泄洪閘,還需幾個(gè)小時(shí)水位降到安全線?
(2)如果防汛指揮部要求在6小時(shí)內(nèi)使水位降到安全線,應(yīng)該再打開幾個(gè)泄洪閘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省宿遷市)九年級(jí)第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

已知:如圖,為平行四邊形ABCD的對(duì)角線,的中點(diǎn),于點(diǎn),與分別交于點(diǎn)

求證:⑴

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省蘇州市九年級(jí)10月月考數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知,AB為⊙O 的直徑,點(diǎn)E 為弧AB 任意一點(diǎn),如圖,AC平分∠BAE,交⊙O于C ,過(guò)點(diǎn)C作CD⊥AE于D,與AB的延長(zhǎng)線交于P.

⑴ 求證:PC是⊙O的切線.⑵ 若∠BAE=60°,求線段PB與AB的數(shù)量關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省揚(yáng)州市九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

 

 

 

 

 

 

 

 

1.(1)填空:菱形ABCD的邊長(zhǎng)是      、面積是    、  高BE的長(zhǎng)是     ;

2.(2)探究下列問(wèn)題:

若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上時(shí)

②  △APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;

3.(3)在運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案