如圖,四邊形ABCD是平行四邊形,點A(1,0),B(3,1),C(3,3).反比例函數(shù)y=(x>0)的函數(shù)圖象經(jīng)過點D,點P是一次函數(shù)y=kx+3-3k(k≠0)的圖象與該反比例函數(shù)圖象的一個公共點.
(1)求反比例函數(shù)的解析式;
(2)通過計算,說明一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點C;
(3)對于一次函數(shù)y=kx+3-3k(k≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍(不必寫出過程).
科目:初中數(shù)學 來源: 題型:解答題
平面直角坐標系中,一次函數(shù)和反比例函數(shù)的圖象都經(jīng)過點.
(1)求的值和一次函數(shù)的表達式;
(2)點B在雙曲線上,且位于直線的下方,若點B的橫、縱坐標都是整數(shù),直接寫出點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
設,是任意兩個不等實數(shù),我們規(guī)定:滿足不等式≤≤的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為. 對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當m≤≤n時,有m≤≤n,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達式;
(3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,直接寫出實數(shù), 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點C、點D,與反比例函數(shù)的圖象在第四象限相交于點P,并且PA⊥x軸于點A,PB⊥y軸于點B,已知B(0,-6)且S△DBP=27.
(1)求上述一次函數(shù)與反比例函數(shù)的表達式;
(2)設點Q是一次函數(shù)y=kx+3圖象上的一點,且滿足△DOQ的面積是△COD面積的2倍,直接寫出點Q的坐標.
(3)若反比例函數(shù)的圖象與△ABP總有公共點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知直線y=-2x+4與x軸交于A點,與y軸交于B點.
(1)求A、B兩點的坐標;
(2)求直線y=-2x+4與坐標軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線y=-x+6分別與x軸、y軸交于A、B兩點;直線y=x與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).
(1)求點C的坐標;
(2)當0<t<5時,求S與t之間的函數(shù)關系式,并求S的最大值;
(3)當t>0時,直接寫出點(4,)在正方形PQMN內(nèi)部時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某地區(qū)冬季干旱,康平社區(qū)每天需從外地調(diào)運飲用水60噸.有關部門緊急部署,從甲、乙兩水廠調(diào)運飲用水到供水點,甲廠每天最多可調(diào)出40噸,乙廠每天最多可調(diào)出45噸.從兩水廠運水到康平社區(qū)供水點的路程和運費如下表:
| 到康平社區(qū)供水點的路程(千米) | 運費(元/噸·千米) |
甲廠 | 20 | 4 |
乙廠 | 14 | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某公司準備與汽車租賃公司簽訂租車合同.以每月用車路程x(km)計算,甲汽車租賃公司的月租費元,乙汽車租賃公司的月租費是元.如果、與x之間的關系如圖所示.
(1)求、與x之間的函數(shù)關系
(2)怎樣選用汽車租賃比較合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com