【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤25).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
【答案】(1)證明見解析(2)當(dāng)t=時(shí),四邊形AEFD能夠成為菱形(3)當(dāng)t為或20時(shí),△DEF為直角三角形
【解析】
(1)根據(jù)時(shí)間和速度表示出AE和CD的長(zhǎng),利用30°所對(duì)的直角邊等于斜邊的一半求出DF的長(zhǎng)為4t,則AE=DF,再證明,AE∥DF即可解決問題.
(2)根據(jù)(1)的結(jié)論可以證明四邊形AEFD為平行四邊形,如果四邊形AEFD能夠成為菱形,則必有鄰邊相等,則AE=AD,列方程求出即可;
(3)當(dāng)△DEF為直角三角形時(shí),有三種情況:①當(dāng)∠EDF=90°時(shí),如圖3,②當(dāng)∠DEF=90°時(shí),如圖4,
③當(dāng)∠DFE=90°不成立;分別找一等量關(guān)系列方程可以求出t的值.
(1)由題意得:AE=2t,CD=4t,
∵DF⊥BC,
∴∠CFD=90°,
∵∠C=30°,
∴DF=CD=×4t=2t,
∴AE=DF;
∵DF⊥BC,
∴∠CFD=∠B=90°,
∴DF∥AE,
∴四邊形AEFD是平行四邊形.
(2)四邊形AEFD能夠成為菱形,理由是:
由(1)得:AE=DF,
∵∠DFC=∠B=90°,
∴AE∥DF,
∴四邊形AEFD為平行四邊形,
若AEFD為菱形,則AE=AD,
∵AC=100,CD=4t,
∴AD=100-4t,
∴2t=100-4t,
t=,
∴當(dāng)t=時(shí),四邊形AEFD能夠成為菱形;
(3)分三種情況:
①當(dāng)∠EDF=90°時(shí),如圖3,
則四邊形DFBE為矩形,
∴DF=BE=2t,
∵AB=AC=50,AE=2t,
∴2t=50-2t,
t=,
②當(dāng)∠DEF=90°時(shí),如圖4,
∵四邊形AEFD為平行四邊形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
在Rt△ADE中,∠A=60°,AE=2t,
∴AD=t,
∴AC=AD+CD,
則100=t+4t,
t=20,
③當(dāng)∠DFE=90°不成立;
綜上所述:當(dāng)t為或20時(shí),△DEF為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的快遞車和貨車同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達(dá)乙地后缷完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時(shí),兩車之間的距離y(千米)與貨車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個(gè)結(jié)論: ①快遞車從甲地到乙地的速度為100千米/時(shí);
②甲、乙兩地之間的距離為120千米;
③圖中點(diǎn)B的坐標(biāo)為(3 ,75);
④快遞車從乙地返回時(shí)的速度為90千米/時(shí),
以上4個(gè)結(jié)論正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
求證:(1)△ADE≌△BEC
(2)△CDE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】?jī)蓚(gè)反比例函數(shù)y= (k>1)和y= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y= 的圖象上,PC⊥x軸于點(diǎn)C,交y= 的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y= 的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y= 圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料.
點(diǎn)M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對(duì)值叫做點(diǎn)M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點(diǎn)A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點(diǎn)的距離?
(3)點(diǎn)P為數(shù)軸上一點(diǎn),其表示的數(shù)為x,用含有x的式子表示BP= ,當(dāng)BP=4時(shí),x= ;當(dāng)|x﹣3|+|x+2|的值最小時(shí),x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)如圖2,當(dāng)直線AC與⊙O相切時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,AB=2 ,點(diǎn)E為對(duì)角線AC上一動(dòng)點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE,EF為鄰邊作矩形DEFG,連接CG.
(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由;
(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的第一條邊的長(zhǎng)是,第二條邊長(zhǎng)是第一條邊長(zhǎng)的2倍少3,第三條邊比第二條邊短5。
(1)用含、的式子表示這個(gè)三角形的周長(zhǎng);
(2)當(dāng),時(shí),求這個(gè)三角形的周長(zhǎng);
(3)當(dāng),三角形的周長(zhǎng)為 39時(shí),求各邊長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com