如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D、E,F(xiàn)為BC中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.
(1)求證:BH=AC;
(2)求證:BG2-GE2=EA2.
(1)(2)證明詳見解析.
【解析】
試題分析:(1)根據(jù)三角形的內(nèi)角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根據(jù)ASA證出△DBH≌△DCA即可.(2)根據(jù)DB=DC和F為BC中點,得出DF垂直平分BC,推出BG=CG,根據(jù)BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.
試題解析:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°.
∴DB=DC,∠ABE=∠DCA.
在△DBH和△DCA中,∵∠DBH=∠DCA,BD=CD,∠BDH=∠CDA,
∴△DBH≌△DCA(ASA).∴BH=AC.
(2)連接CG,
∵F為BC的中點,DB=DC,∴DF垂直平分BC. ∴BG=CG.
∵∠ABE=∠CBE,BE⊥AC,∴∠AEB=∠CEB.
在△ABE和△CBE中,∵∠AEB=∠CEB,BE=BE,∠CBE=∠ABE,
∴△ABE≌△CBE(ASA).∴EC=EA.
在Rt△CGE中,由勾股定理得:CG2﹣GE2=EC2.
∴BG2﹣GE2=EA2.
考點:1.全等三角形的判定和性質(zhì);2.線段垂直平分線的性質(zhì)3.勾股定理.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com