如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D、E,F(xiàn)為BC中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.

(1)求證:BH=AC;

(2)求證:BG2-GE2=EA2

 

【答案】

(1)(2)證明詳見解析.

【解析】

試題分析:(1)根據(jù)三角形的內(nèi)角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根據(jù)ASA證出△DBH≌△DCA即可.(2)根據(jù)DB=DC和F為BC中點,得出DF垂直平分BC,推出BG=CG,根據(jù)BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.

試題解析:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,

∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°.

∴DB=DC,∠ABE=∠DCA.

在△DBH和△DCA中,∵∠DBH=∠DCA,BD=CD,∠BDH=∠CDA,

∴△DBH≌△DCA(ASA).∴BH=AC.

(2)連接CG,

∵F為BC的中點,DB=DC,∴DF垂直平分BC. ∴BG=CG.

∵∠ABE=∠CBE,BE⊥AC,∴∠AEB=∠CEB.

在△ABE和△CBE中,∵∠AEB=∠CEB,BE=BE,∠CBE=∠ABE,

∴△ABE≌△CBE(ASA).∴EC=EA.

在Rt△CGE中,由勾股定理得:CG2﹣GE2=EC2.

∴BG2﹣GE2=EA2.

考點:1.全等三角形的判定和性質(zhì);2.線段垂直平分線的性質(zhì)3.勾股定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案