【題目】如圖1,在中,,,,于點(diǎn)D,將繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到
如圖2,當(dāng)時(shí),求點(diǎn)C、E之間的距離;
在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)A、E、F三點(diǎn)共線時(shí),求AF的長;
連結(jié)AF,記AF的中點(diǎn)為P,請(qǐng)直接寫出線段CP長度的最小值.
【答案】(1)CE=;(2)AF的長為+或﹣;(3)CP的最小值=OC﹣OP=2﹣.
【解析】
(1)只要證明∠CBE=90°,求出BE,BC利用勾股定理即可解決問題.
(2)分兩種情形畫出圖形分別求解即可.
(3)如圖3中,取AB的中點(diǎn)O,連接OP,CO.利用三角形的中位線定理可得OP= ,推出點(diǎn)P的運(yùn)動(dòng)軌跡是以O為圓心 為半徑的圓,由此即可解決問題.
解:(1)如圖1中,
在Rt△ABC中,∵∠ACB=90°,∠ABC=30°,AC=2,
∴AB=2AC=4,BC= =2,
∵CD⊥AB,
∴ ABCD= ACBC,
∴CD= = = ,
∴BD=BE= =3,
∵∠ABE=α=60°,
∴∠CBE=30°+60°=90°,
∴CE= = =.
(2)如圖2﹣1中,
∵A,F,E三點(diǎn)共線,
∴∠AEB=90°,AE= = = ,
∴AF=AE﹣EF=﹣ .
如圖2﹣2中,
當(dāng)A,E,F共線時(shí),∠AEB=90°,AE= = =,
∴AF=AE+EF=+.
綜上所述,AF的長為+或﹣.
(3)如圖3中,取AB的中點(diǎn)O,連接OP,CO.
∵AO=OB,AP=PF,
∴OP= BF=BC=,
∴點(diǎn)P的運(yùn)動(dòng)軌跡是以O為圓心為半徑的圓,
∵OC= AB=2,
∴CP的最小值=OC﹣OP=2﹣.
故答案為:(1)CE= ;(2)AF的長為+或﹣;(3)CP的最小值=OC﹣OP=2﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)對(duì)寧波市相關(guān)的市場物價(jià)調(diào)研,某批發(fā)市場內(nèi)甲種水果的銷售利潤y1(千元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y1=0.25x,乙種水果的銷售利潤y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)y2=ax2+bx+c的圖象如圖所示.
(1)求出y2與x之間的函數(shù)關(guān)系式;
(2)如果該市場準(zhǔn)備進(jìn)甲、乙兩種水果共8噸,設(shè)乙水果的進(jìn)貨量為t噸,寫出這兩種水果所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(記過保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,,點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E、F分別是CA,CB邊的中點(diǎn),過點(diǎn)P作于D,設(shè),圖中某條線段的長為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1,與x軸的另一個(gè)交點(diǎn)為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,作OF∥AB交BC于點(diǎn)F,連接EF.
(1)求證:OF⊥CE;
(2)求證:EF是⊙O的切線;
(3)若⊙O的半徑為3,∠EAC=60°,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】朗讀者自開播以來,以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開展“朗讀”比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫表格;
結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績較好;
如果規(guī)定成績較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com