四邊形ABCD的對角線相交于點O且OA=OB=OC=OD,則這個四邊形( )
A.僅是軸對稱圖形
B.既不是軸對稱圖形,又不是中心對稱圖形
C.僅是中心對稱圖形
D.既是軸對稱圖形,又是中心對稱圖形
【答案】分析:首先根據(jù)已知條件OA=OB=OC=OD,可知四邊形ABCD的對角線相等且互相平分,得出四邊形ABCD是矩形,然后根據(jù)矩形的對稱性,得出結(jié)果.
解答:解:如圖所示:
∵四邊形ABCD的對角線相交于點O且OA=OB=OC=OD,
∴OA=OC,OB=OD;AC=OA+OC=OB+OD=BD,
∴四邊形ABCD是矩形,
∴四邊形ABCD既是軸對稱圖形,又是中心對稱圖形.
故選D.
點評:本題主要考查了矩形的判定及矩形的對稱性.對角線相等且互相平分的四邊形是矩形,矩形既是軸對稱圖形,又是中心對稱圖形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準外心.那么你認為Q是
AC的中垂線
AC的中垂線
BD的中垂線
BD的中垂線
的交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是
15
15

查看答案和解析>>

科目:初中數(shù)學 來源:1+1輕巧奪冠·優(yōu)化訓練·八年級數(shù)學下 題型:013

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關(guān)系為

[  ]

A.∠B+∠D=180°

B.∠B=∠D

C.∠B>∠D

D.∠B<∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關(guān)系為


  1. A.
    ∠B+∠D=180°
  2. B.
    ∠B=∠D
  3. C.
    ∠B>∠D
  4. D.
    ∠B<∠D

查看答案和解析>>

同步練習冊答案