【題目】定義:經(jīng)過(guò)三角形一邊中點(diǎn),且平分三角形周長(zhǎng)的直線叫做這個(gè)三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.
(1)如圖,△ABC中,AC>AB,DE是△ABC在BC邊上的中分線段,F為AC中點(diǎn),過(guò)點(diǎn)B作DE的垂線交AC于點(diǎn)G,垂足為H,設(shè)AC=b,AB=c.
①求證:DF=EF;
②若b=6,c=4,求CG的長(zhǎng)度;
(2)若題(1)中,S△BDH=S△EGH,求的值.
【答案】(1)①詳見(jiàn)解析;②2;(2)
【解析】
(1)①由題意得出DF是△CAB的中位線,得出DF=AB=c,AF=AC=b,CE=(b+c),AE=(b﹣c),求出EF=AF﹣AE=c,即可得出結(jié)論;
②過(guò)點(diǎn)A作AP⊥BG于P,由中位線定理得出DF∥AB,得出∠DFC=∠BAC,求出∠DEF=∠EDF,∠BAP+∠PAC=2∠DEF,由ED⊥BG,AP⊥BG,得出DE∥AP,得出∠PAC=∠DEF,∠BAP=∠DEF=∠PAC,再由AP⊥BG,得出AB=AG=4,即可得出結(jié)果;
(2)連接BE、DG,由S△BDH=S△EGH,得出S△BDG=S△DEG,推出BE∥DG,再由DF∥AB,得出△ABE∽△FDG,得出,推出FG=(b﹣c),CF=b=FG+CG=(b﹣c)+(b﹣c),即可得出結(jié)果.
(1)①證明:∵F為AC中點(diǎn),DE是△ABC在BC邊上的中分線段,
∴DF是△CAB的中位線,
∴DF=AB=c,AF=AC=b,CE=(b+c),
∴AE=b﹣CE=b﹣(b+c)=(b﹣c),
∴EF=AF﹣AE=b﹣(b﹣c)=c,
∴DF=EF;
②解:過(guò)點(diǎn)A作AP⊥BG于P,如圖1所示:
∵DF是△CAB的中位線,
∴DF∥AB,
∴∠DFC=∠BAC,
∵∠DFC=∠DEF+∠EDF,EF=DF,
∴∠DEF=∠EDF,
∴∠BAP+∠PAC=2∠DEF,
∵ED⊥BG,AP⊥BG,
∴DE∥AP,
∴∠PAC=∠DEF,
∴∠BAP=∠DEF=∠PAC,
∵AP⊥BG,
∴AB=AG=4,
∴CG=AC﹣AG=6﹣4=2;
(2)解:連接BE、DG,如圖2所示:
∵S△BDH=S△EGH,
∴S△BDG=S△DEG,
∴BE∥DG,
∵DF∥AB,
∴△ABE∽△FDG,
∴,
∴FG=AE=×(b﹣c)=(b﹣c),
∵AB=AG=c,
∴CG=b﹣c,
∴CF=b=FG+CG=(b﹣c)+(b﹣c),
∴3b=5c,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機(jī)抽取20戶居民的用水情況::
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補(bǔ)充畫(huà)出這20戶家庭三月份用電量的條形統(tǒng)計(jì)圖;
(2)據(jù)上表中有關(guān)信息,計(jì)算或找出下表中的統(tǒng)計(jì)量,并將結(jié)果填入表中:
統(tǒng)計(jì)量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導(dǎo)“節(jié)約用水綠色環(huán)!钡囊庾R(shí),江贛市自來(lái)水公司實(shí)行“梯級(jí)用水、分類計(jì)費(fèi)”,價(jià)格表如下:
月用水梯級(jí)標(biāo)準(zhǔn) | Ⅰ級(jí)(30噸以內(nèi)) | Ⅱ級(jí)(超過(guò)30噸的部分) |
單價(jià)(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請(qǐng)估算該小區(qū)三月份有多少戶家庭在Ⅰ級(jí)標(biāo)準(zhǔn)?
(4)按上表收費(fèi),如果某用戶本月交水費(fèi)120元,請(qǐng)問(wèn)該用戶本月用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對(duì)稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計(jì)劃購(gòu)買A型和B型新能源公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需300萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需270萬(wàn)元,
(1)求購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?
(2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為80萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1000萬(wàn)元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,1),B(4,2),C(2,0).
(1)將△ABC沿y軸翻折得到△A1B1C1,畫(huà)出△A1B1C1;
(2)將△ABC繞著點(diǎn)(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫(huà)出△A2B2C2;
(3)線段B2C2可以看成是線段B1C1繞著平面直角坐標(biāo)系中某一點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點(diǎn),連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有足夠多的除顏色外都相同的球供你選用,還有一個(gè)最多只能裝10個(gè)球的不透明袋子.
(1)請(qǐng)你設(shè)計(jì)一個(gè)摸球游戲,使得從袋中任意摸出1個(gè)球,摸得紅球的概率為,則應(yīng)往袋中如何放球;
(2)若袋中裝有2個(gè)紅球和2個(gè)白球,攪勻后從袋中摸出一個(gè)球后,不放回,然后再摸出一個(gè)球,則請(qǐng)用列表或畫(huà)樹(shù)形圖的方法列出所有等可能情況,并求出兩次摸出的球都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+b的圖象經(jīng)過(guò)點(diǎn)A(0,1),與反比例函數(shù)y=(x>0)的圖象交于B(m,2).
(1)求k和b的值;
(2)在雙曲線y=(x>0)上是否存在點(diǎn)C,使得△ABC為等腰直角三角形?若存在,求出點(diǎn)C坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=,反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=12,求OA的長(zhǎng)和點(diǎn)C的坐標(biāo);
(3)在(2)中的條件下,過(guò)點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖②),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P,使以P、O、A為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com