等邊三角形的邊長為8cm,則它的面積為______cm2
∵AB=AC=BC=8cm
∴DC=4cm
∴AD=
AB2-CD2
=
82-42
=4
3

∴S△ABC=
1
2
×BC×AD=
1
2
×8×4
3
=16
3
cm2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:等邊△ABC的邊長為a.
探究(1):如圖1,過等邊△ABC的頂點A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=
3
a;
探究(2):在等邊△ABC內(nèi)取一點O,過點O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點D、E、F.
①如圖2,若點O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=
3
2
a;結(jié)論2. AD+BE+CF=
3
2
a;
②如圖3,若點O是等邊△ABC內(nèi)任意一點,則上述結(jié)論1,2是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

等邊△ABC的邊長為a,頂點A在原點,一條高線恰好落在y軸的負半軸上,則第三象限的頂點B的坐標是(  )
A.(
a
2
,-
3
2
a
B.(-
3
2
a
,-
1
2
a
C.(-
a
2
-
3
2
a
D.(-
3
2
a
,
1
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

等邊△OAB在平面直角坐標系中(圖1),已知點A(2,0),將△OAB繞點O順時針方向旋轉(zhuǎn)a°(0<a<360)得△OA1B1
(1)直接寫出點B的坐標;
(2)當(dāng)a=30°時,求△OAB與△OA1B1重合部分(圖2中的陰影部分)的面積;
(3)當(dāng)A1,B1的縱坐標相同時,求a的值;
(4)當(dāng)60<a<180時,設(shè)直線A1B1與BA相交于點P,PA、PB1的長是方程x2-mx+m=0的兩個實數(shù)根,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.

(1)當(dāng)把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ADE繞A點旋轉(zhuǎn)到圖3的位置時,△AMN是否還是等邊三角形?若是,請給出證明,并求出當(dāng)AB=2AD時,△ADE與△ABC及△AMN的面積之比;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC和△BDE都是等邊三角形,求證:AE=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,要把邊長為6的正三角形紙板剪去三個三角形,得到正六邊形,它的邊長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ABC和△ACD都是邊長為4厘米等邊三角形,兩個動點P,Q同時從A點出發(fā),點P以1厘米/秒的速度沿A→C→B的方向運動,點Q以2厘米/秒的速度沿A→B→C→D的方向運動,當(dāng)點Q運動到D點時,P、Q兩點同時停止運動.設(shè)P、Q運動的時間為t秒時.解答下列問題:
(1)點P、Q從出發(fā)到相遇所用時間是______秒;
(2)在P、Q兩點運動過程中,當(dāng)t取何值時,△APQ也是等邊三角形?并請說明理由;
(3)當(dāng)0<t<2時,∠APQ始終是直角,請畫出示意圖并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形網(wǎng)格上有一個△ABC.
(1)若網(wǎng)格上的最小正方形邊長為1,△ABC的面積為______.
(2)在網(wǎng)格中以BC為一邊作格點△BCD(頂點在小正方形的頂點處的三角形稱為格點三角形),使它的面積是△ABC的2倍.備注:畫出一個即可.

查看答案和解析>>

同步練習(xí)冊答案