【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,點(diǎn)M,N分別在線段AC,AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,若△DCM為直角三角形時(shí),則AM的長(zhǎng)為_____

【答案】2或3﹣3

【解析】

依據(jù)△DCM為直角三角形,需要分兩種情況進(jìn)行討論:當(dāng)∠CDM90°時(shí),△CDM是直角三角形;當(dāng)∠CMD90°時(shí),△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到AM的長(zhǎng).

解:分兩種情況:

如圖,當(dāng)∠CDM90°時(shí),△CDM是直角三角形,

Rt△ABC中,∠B90°∠A60°,AB3

∴AC2AB6,∠C30°,由折疊可得,∠MDN∠A60°

∴∠BDN30°,

∴BNDNAN

∴BNAB1,

∴AN2BN2

∵∠DNB60°,

∴∠ANM∠DNM60°

∴∠AMN60°,

∴AMAN2

如圖,當(dāng)∠CMD90°時(shí),△CDM是直角三角形,

由題可得,∠CDM60°,∠A∠MDN60°

∴∠BDN60°,∠BND30°,

∴BDDNANBNBD,

∵AB3

∴AN62),BN69,

NNH⊥AMH,則∠ANH30°

∴AHAN32),HN69

由折疊可得,∠AMN∠DMN45°

∴△MNH是等腰直角三角形,

∴HMHN69

∴AMAH+HM32+6933,

故答案為:233

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險(xiǎn)?請(qǐng)通過計(jì)算加以說明.如果有危險(xiǎn),輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一顆古樹BH和教學(xué)樓CG的高,測(cè)角儀高AF=2米,先在A處測(cè)得古樹頂端H的仰角∠HFE45°,此時(shí)教學(xué)樓頂端G恰好在視線FH上,再向前走20米到達(dá)B處(AB=20米),又測(cè)得教學(xué)樓頂端G的仰角∠GED60°.點(diǎn)A、B、C三點(diǎn)在同一水平線上.

1)求古樹BH的高;

2)求教學(xué)樓CG的高.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲,乙兩個(gè)電子團(tuán)隊(duì)整理一批電腦數(shù)據(jù),整理電腦的臺(tái)數(shù)為(臺(tái))與整理需要的時(shí)間之間關(guān)系如下圖所示,請(qǐng)依據(jù)圖象提供的信息解答下列問題:

1)乙隊(duì)工作小時(shí)整理_____臺(tái)電腦,工作時(shí)兩隊(duì)一共整理了_______臺(tái);

2)求甲、乙兩隊(duì)的關(guān)系式.

3)甲、乙兩隊(duì)整理電腦臺(tái)數(shù)相等時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點(diǎn),BCx軸于點(diǎn)C,若OBC的面積為2,且A點(diǎn)的縱坐標(biāo)為4,B點(diǎn)的縱坐標(biāo)為1

1)求反比例函數(shù)、一次函數(shù)的表達(dá)式及直線ABx軸交點(diǎn)E的坐標(biāo);

2)已知點(diǎn)Dt0)(t0),過點(diǎn)D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點(diǎn)P,與反比函數(shù)上的圖像相交于點(diǎn)Q,若點(diǎn)P位于點(diǎn)Q的上方,請(qǐng)結(jié)合函數(shù)圖像直接寫出此時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在正方形ABCD中,GCD邊上的一個(gè)動(dòng)點(diǎn)(不與C、D重合),以CG為邊在正方形ABCD外作一個(gè)正方形CEFG,連結(jié)BGDE,如圖.直接寫出線段BGDE的關(guān)系 ;

2)將圖中的正方形CEFG繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)任意角度,如圖,試判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論,若不成立,說明理由;

3)將(1)中的正方形都改為矩形,如圖,再將矩形CEFG繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)任意角度,如圖,若AB=a,BC=bCE =ka,CG=kb,()試判斷(1)中的結(jié)論是否仍然成立?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人用如圖的兩個(gè)分格均勻的轉(zhuǎn)盤A、B做游戲,游戲規(guī)則如下:分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針分別指向一個(gè)數(shù)字(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止).用所指的兩個(gè)數(shù)字相乘,如果積是奇數(shù),則甲獲勝;如果積是偶數(shù),則乙獲勝.請(qǐng)你解決下列問題:

1)用列表格或畫樹狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果.

2)求甲、乙兩人獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+2a≠0)與x軸交于A40)、B(﹣10)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);

2)把(1)中所求出的拋物線記為C1,將C1向右平移m個(gè)單位得到拋物線C2C1C2的在第一象限交點(diǎn)為M,過點(diǎn)MMKK,MG⊥x軸于點(diǎn)G,交線段AC于點(diǎn)H,連接CM

求線段MK長(zhǎng)度的最大值;

當(dāng)△CMH為等腰三角形時(shí),求拋物線向右平移的距離m和此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視經(jīng)典詠流傳開播以來受到社會(huì)廣泛關(guān)注.我市某校就中華文化我傳承——地方戲曲進(jìn)校園的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;

(4)在抽取的A5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案