(2002•內江)如圖,一次函數(shù)y=-x+3的圖象交x軸于點A,交y軸于點Q,拋物線y=ax2+bx+c(a≠0)的頂點為C,其圖象過A、Q兩點,并與x軸交于另一個點B(B點在A點左側),△ABC三內角∠A、∠B、∠C的對邊為a,b,c.若關于x的方程a(1-x2)+2bx+c(1+x2)=0有兩個相等實數(shù)根,且a=b;
(1)試判定△ABC的形狀;
(2)當時求此拋物線的解析式;
(3)拋物線上是否存在點P,使S△ABP=S四邊形ACBQ?若存在,求出P點坐標;若不存在,請說明理由.

【答案】分析:(1)可將題中給出的方程進行整理,已知了方程有兩個相同的實數(shù)根,那么方程的△=0,然后聯(lián)立a=b,即可判斷出三角形ABC的形狀.
(2)可先根據(jù)直線AQ的解析式求出A、Q的坐標,進而可求出線段AQ的長,根據(jù)AB、AQ的比例關系式,可求出AB的長,即可得出B點坐標,然后根據(jù)已知的A、B、Q的坐標,用待定系數(shù)法求出拋物線的解析式.
(3)可先求出四邊形ACBQ的面積,然后根據(jù)三角形ABP和四邊形ACBQ面積相等,即可得出三角形ABP的面積,AB長為定值,可求出P點縱坐標的絕對值,將其代入拋物線的解析式中,即可求出P點坐標.
解答:解:(1)方程整理得(c-a)x2+2bx+(c+a)=0;
由方程有兩個相等的實數(shù)根
得△=0

即△ABC為等腰直角三角形.

(2)在y=-x+3中,令x=0,則y=3;令y=0,則x=3;
∴A(3,0),Q(0,3);
設B點坐標為(x,0);
∴AB=3-x
在Rt△AOQ中,AQ==3,
,

解之得:x=1,
∴B(1,0),
∵拋物線過A、B、Q三點,則有:
,
解得
∴拋物線的解析式為y=x2-4x+3.

(3)假設拋物線上有點P,坐標為(x,y);
∴S△ABP=×AB×|y|=|y|;
S四邊形ACBQ=S△ABC+S△ABQ
=×2×1+×2×3=4
由S△ABP=S四邊形ACBQ,得|y|=4;
∴y=±4;
當y=4時,x2-4x+3=4;解得x=2+,x=2-
當y=-4時,x2-4x+3=-4,△<0,方程無解.
∴拋物線上存在點P的,其坐標為(2+,4)或(2-,4).
點評:本題考查了等腰直角三角形的判定、二次函數(shù)解析式的確定、圖形面積的求法等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•內江)如圖,一次函數(shù)y=-x+3的圖象交x軸于點A,交y軸于點Q,拋物線y=ax2+bx+c(a≠0)的頂點為C,其圖象過A、Q兩點,并與x軸交于另一個點B(B點在A點左側),△ABC三內角∠A、∠B、∠C的對邊為a,b,c.若關于x的方程a(1-x2)+2bx+c(1+x2)=0有兩個相等實數(shù)根,且a=b;
(1)試判定△ABC的形狀;
(2)當時求此拋物線的解析式;
(3)拋物線上是否存在點P,使S△ABP=S四邊形ACBQ?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年四川省內江市中考數(shù)學試卷(解析版) 題型:填空題

(2002•內江)如圖,以△ABC的BC邊為直徑的半圓交AB于D,交AC于E,EF⊥BC,垂足為F,BF:FC=5:1,AB=8cm,AE=2cm.則AD的長是    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2002•內江)如圖,以Rt△BCF的斜邊BC為直徑作⊙O,A為上一點,且=,AD⊥BC,垂足為D,過A作AE∥BF交CB的延長線于E.
求證:
(1)AE是⊙O切線;
(2);
(3)若⊙O直徑為d,則

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

(2002•內江)如圖,以△ABC的BC邊為直徑的半圓交AB于D,交AC于E,EF⊥BC,垂足為F,BF:FC=5:1,AB=8cm,AE=2cm.則AD的長是    cm.

查看答案和解析>>

同步練習冊答案