(2010•三明)如圖,BD是⊙O的弦.過點D作⊙O的切線交BO延長線于點A.AC⊥AD交BD延長線于點C.
(1)求證:AB=AC;
(2)若AB=5,∠B=25°.求AD的長.(精確到0.1)

【答案】分析:遇到切點,連接切點和圓心構(gòu)造垂直是常用的手段.連接OD,利用OD⊥AD和AC⊥AD得到OD∥AC,進(jìn)而得到∠B=∠ODB=∠C,從而得到AB=AC.而第二問直接利用解直角三角形得到.
解答:(1)證明:連接OD.
∵AD切⊙O于D,
∴OD⊥AD.
∵AC⊥AD,
∴∠ODA=∠DAC=90°.
∴OD∥AC.
∴∠1=∠C.
∵OB=OD,
∴∠B=∠1.
∴∠B=∠C.
∴AB=AC.

(2)解:由(1)得,∠C=∠B,AB=AC,
∴∠C=25°,AC=5.
在Rt△ACD中,tanC=,
∴AD=ACtanC=5tan25°≈2.3.
點評:本題考查了切線的性質(zhì)及解直角三角形的應(yīng)用,應(yīng)重點掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•三明)如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關(guān)系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當(dāng)直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•三明)如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關(guān)系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當(dāng)直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(01)(解析版) 題型:選擇題

(2010•三明)如圖,在3×3正方形網(wǎng)格中,已有三個小正方形被涂黑,將剩余的白色小正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•三明)如圖是小玲設(shè)計用手電來測量某古城墻高度的示意圖.在點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后,剛好射到古城墻CD的頂端C處.已知AB⊥BD,CD⊥BD.且測得AB=1.4米,BP=2.1米,PD=12米.那么該古城墻CD的高度是    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•三明)如圖,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分線DE交AB于點D,交BC于點E,則下列結(jié)論不正確的是( )

A.AE=BE
B.AC=BE
C.CE=DE
D.∠CAE=∠B

查看答案和解析>>

同步練習(xí)冊答案