【題目】如圖,在ABC中,AB=CB,ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.

① 求證:△ABE≌△CBD

② 若∠CAE30°,求BDC的度數(shù).

【答案】證明見解析②∠BDC75°

【解析】試題分析:(1)利用邊角邊證明ABE≌△CBD即可;先根據(jù)等腰直角三角形的銳角都是45°求出CAB,再求出BAE,然后根據(jù)全等三角形對應(yīng)角相等求出BCD,再根據(jù)直角三角形兩銳角互余其解即可;

試題解析:

1)證明:∵∠ABC=90°DAB延長線上一點,

∴∠ABE=∠CBD=90°,

ABECBD中,

,

∴△ABE≌△CBDSAS);

2AB=CB,ABC=90°,

∴∠CAB=45°,

∵∠CAE=30°,

∴∠BAE=∠CAB-∠CAE=45°-30°=15°,

∵△ABE≌△CBD,

∴∠BCD=∠BAE=15°,

∴∠BDC=90°-∠BCD=90°-15°=75°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知ADBC,B=D=120°

1)請問:ABCD平行嗎?為什么?

2)若點E、F在線段CD上,且滿足AC平分∠BAE,AF平分∠DAE,如圖②,求∠FAC的度數(shù).

3)若點E在直線CD上,且滿足∠EAC=BAC,求∠ACDAED的值(請自己畫出正確圖形,并解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形沿圖中虛線用剪刀平均分成4個小長方形,然后按圖2的形狀拼成一個正方形.

(1)2中陰影部分的面積為

(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系:

(3)x+y=-6,xy=2.75,x-y= ;

(4)實際上有許多恒等式可以用圖形的面積來表示,如圖3,它表示等式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地之間有一座山,汽車原來從A地到B地須經(jīng)C地沿折線A﹣C﹣B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10km,A=30°,B=45°,則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果精確到0.1km)(參考數(shù)據(jù):1.41,1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了預(yù)測本校應(yīng)屆畢業(yè)女生一分鐘跳繩項目考試情況,從九年級隨機(jī)抽取部分女生進(jìn)行該項目測試,并以測試數(shù)據(jù)為樣本,繪制出如圖10所示的部分頻數(shù)分布直方圖(從左到右依次分為六個小組,每小組含最小值,不含最大值)和扇形統(tǒng)計圖.根據(jù)統(tǒng)計圖提供的信息解答下列問題:

(1)補(bǔ)全頻數(shù)分布直方圖,并指出這個樣本數(shù)據(jù)的中位數(shù)落在第 小組;

(2)若測試九年級女生一分鐘跳繩次數(shù)不低于130次的成績?yōu)閮?yōu)秀,本校九年級女生共有260人,請估計該校九年級女生一分鐘跳繩成績?yōu)閮?yōu)秀的人數(shù);

(3)如測試九年級女生一分鐘跳繩次數(shù)不低于170次的成績?yōu)闈M分,在這個樣本中,從成績?yōu)閮?yōu)秀的女生中任選一人,她的成績?yōu)闈M分的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為開心大轉(zhuǎn)盤,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母A,則收費2元,若指針指向字母B,則獎勵3元;若指針指向字母C,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法正確的是( )

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)下面朝上50

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《列子》中《歧路亡羊》寫道:

楊子之鄰人亡羊,既率其黨,又請楊子之豎追之。楊 子曰:!亡一羊,何追者之眾?”鄰人日:“多歧路。”既 反,問:獲羊乎?”日:“亡之矣!痹唬骸稗赏鲋?”曰:“歧路 之中又有歧焉,吾不知所之,所以反也.”

如圖,假定所有的分叉口都各有兩條新的歧路,并且丟失的羊走每條歧路的可能性都相等.

(1)到第n次分歧時,共有多少條歧路?以當(dāng)羊走過n個三叉路口后,找到羊的概率是多少?

2)當(dāng)n=5時,派出6個人去找羊,找到羊的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】佳佳果品店在批發(fā)市場購買某種水果銷售,第一次用1 200元購進(jìn)若干千克,并以8/kg出售,很快售完.由于水果暢銷,第二次購買時,每千克的進(jìn)價比第一次提高了10%,1 452元所購買的數(shù)量比第一次多20 kg,9/kg售出100 kg,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價50%售完剩余的水果.

(1)第一次水果的進(jìn)價是每千克多少元?

(2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

同步練習(xí)冊答案