如圖,AB為半圓O的直徑,OC⊥AB,OD平分∠BOC,交半圓于點(diǎn)D,AD交OE于點(diǎn)E,則∠AEO的度數(shù)是( 。
分析:根據(jù)OC⊥AB,得出∠BOC=90°,再根據(jù)OD平分∠BOC,得出∠BOD=
1
2
∠BOC,再根據(jù)同弧所對的圓周角和圓心角的關(guān)系得出∠OAD=
1
2
∠BOD,最后根據(jù)內(nèi)角和定理即可求得∠OAD的度數(shù).
解答:解:∵OC⊥AB,
∴∠BOC=90°,
∵OD平分∠BOC,
∴∠BOD=
1
2
∠BOC=45°,
∴∠OAD=
1
2
∠BOD=22.5°;
再Rt△AEO中,∠AOE=90°,
則∠AEO=90°-∠OAE=67.5°.
故選A.
點(diǎn)評:此題主要考查了角平分線的性質(zhì)及圓周角定理,用到的知識點(diǎn)是圓周角定理,三角形的內(nèi)角和,圓心角、弧的關(guān)系,關(guān)鍵是求出∠OAD的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,AB為半圓⊙O的直徑,C為半圓上的一點(diǎn).
(1)請你只用直尺和圓規(guī),分別以AC、BC為直徑,向△ABC外側(cè)作半圓.(不必寫出作法,只需保留作圖痕跡)
(2)若AC=3,BC=4,求所作的兩個半圓中不與⊙O重疊的部分的面積和.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有點(diǎn)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時,m+
1
m
有最小值
 
;
(2)思考驗(yàn)證:如圖,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過點(diǎn)C作CD⊥AB,垂足精英家教網(wǎng)為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證a+b≥2
ab
,并指出等號成立時的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,CB切半圓于點(diǎn)B,AC交半圓于點(diǎn)D,若CD=1,AD=3,則⊙O半徑的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為半圓O的直徑,D、E是半圓上的兩點(diǎn),且BD平分∠ABE,過點(diǎn)D作BE延長線的垂線,垂足為精英家教網(wǎng)C,直線CD交BA的延長線于點(diǎn)F.
(1)求證:直線CD是半圓O的切線;
(2)若FA=2,OA=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,B1,B2,…,Bk是半圓上的k個點(diǎn),滿足BB1=B1B2=…Bk-1Bk,對于線段OB1,OB2,…,OBk,AB1,AB2,…,ABk,當(dāng)k=4時,有
 
對互相平行的線段;當(dāng)k取任意大于1的整數(shù)時,試探索這2k條線段中有多少對互相平行的線段,寫出你的結(jié)論:
 

查看答案和解析>>

同步練習(xí)冊答案