如圖,在直角坐標(biāo)系中,點(diǎn)M在y軸的正半軸上,⊙M與x軸交于A,B兩點(diǎn),AD是⊙M的直徑,過點(diǎn)D作⊙M的切線,交x軸于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)C的坐標(biāo)為(5,0).
(1)求點(diǎn)B的坐標(biāo)和CD的長;
(2)過點(diǎn)D作DE∥BA,交⊙M于點(diǎn)E,連接AE,求AE的長.

【答案】分析:(1)A點(diǎn)坐標(biāo)為(-3,0),則B點(diǎn)坐標(biāo)為(3,0),再根據(jù)點(diǎn)C的坐標(biāo)為(5,0),就可以求出BC與AC的長,根據(jù)切割線定理得到CD2=CB•CA,就可以求出CD的長.
(2)根據(jù)DE∥BA,得到=,所以AE=DB;因而就可以把求AE的問題轉(zhuǎn)化為求BD的問題,在直角△BDC中,根據(jù)勾股定理就可以求得.
解答:解:(1)∵M(jìn)O⊥AB,
∴OA=OB.
∵A點(diǎn)坐標(biāo)為(-3,0),
∴B點(diǎn)坐標(biāo)為(3,0);(2分)
∵CD是⊙M的切線,
∴CD2=CB•CA=2×8=16,
∴CD=4.(3分)

(2)∵AD是直徑,
∴DB⊥AB,
∴BD===2;(2分)
∵DE∥BA,
=
∴AE=DB,
∴AE=2.(2分)
點(diǎn)評(píng):本題主要考查了切割線定理,并且考查了同圓或等圓中相等的弧所對(duì)的弦相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案