在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CEBD于E,延長AF、EC交于點H,下列結(jié)論中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正確的個數(shù)為(  )

A.1個B.2個 C.3個D.4個

C

解析試題分析:根據(jù)矩形的性質(zhì)可得OA=OB=OC=OD,由AD=,AB=1根據(jù)特殊角的銳角三角函數(shù)值可求出∠ADB=30°,即得∠ABO=60°,從而可證得△ABO是等邊三角形,即得AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,再依次分析各小題即可作出判斷.
根據(jù)已知條件不能推出AF=FH,故①錯誤;
解:∵四邊形ABCD是矩形,
∴∠BAD=90°,
∵AD=,AB=1,
∴tan∠ADB=,
∴∠ADB=30°,
∴∠ABO=60°,
∵四邊形ABCD是矩形,
∴AD∥BC,AC=BD,AC=2AO,BD=2BO,
∴AO=BO,
∴△ABO是等邊三角形,
∴AB=BO,∠AOB=∠BAO=60°=∠COE,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵AD∥BC,
∴∠DAF=∠AFB,
∴∠BAF=∠AFB,
∴AB=BF,
∵AB=BO,
∴BF=BO,故②正確;
∵∠BAO=60°,∠BAF=45°,
∴∠CAH=15°,
∵CE⊥BD,
∴∠CEO=90°,
∵∠EOC=60°,
∴∠ECO=30°,
∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH,
∴AC=CH,故③正確;
∵△AOB是等邊三角形,
∴AO=OB=AB,
∵四邊形ABCD是矩形,
∴OA=OC,OB=OD,AB=CD,
∴DC=OC=OD,
∵CE⊥BD,
∴DE=EO=DO=BD,
∴BE=3ED,故④正確;
∴正確的有3個,
故選C.
考點:矩形的性質(zhì),平行線的性質(zhì),角平分線的性質(zhì),三角形的性質(zhì)和判定,等邊三角形的性質(zhì)和判定
點評:本題知識點較多,綜合性強,是中考常見題,一般是中考壓軸題,難度較大,需特別注意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點E,EF⊥AD交AD于點F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點不重合的動點,過點P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點,AF的延長線交DC的延長線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點,連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設(shè)CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個角的角平分線,E、M、F、N是其交點,求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習(xí)冊答案