【題目】下表是書法小組某次測驗(yàn)的成績統(tǒng)計(jì)表.則成績的眾數(shù)是(  

成績/

7

8

9

10

人數(shù)/

4

3

2

1

A.1B.4C.7D.8

【答案】C

【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè).

解:由表可知,7出現(xiàn)次數(shù)最多,所以眾數(shù)為7;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在AOBCOD中,OA=OB,OC=OD,AOB=COD=50°,

求證:①AC=BD;②∠APB=50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P在第二象限內(nèi),點(diǎn)Px軸的距離是5,到y軸的距離是2,則點(diǎn)P的坐標(biāo)為(

A. (-5,2) B. -5,-2 C. -2,5 D. -2,-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a3a+4b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對稱軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線a,過拋物線頂點(diǎn)P作PH⊥a于H.

(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;

(3)當(dāng)1<PH≤6時(shí),試比較y1,y2,y3之間的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.

(1)求拋物線的解析式;

(2)點(diǎn)P是第二象限拋物線上的一個(gè)動點(diǎn),連接EP,過點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,過點(diǎn)E作EH⊥ED交MF的延長線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEAC、CFAB于點(diǎn)EF,BECF交于點(diǎn)DDE=DF,連接AD

求證:(1FAD=EAD

2BD=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC,CEAB,D、E為垂足,BDCE交于點(diǎn)O,則圖中全等三角形共有_________對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列各點(diǎn)中,與點(diǎn)A(-2,-4)的連線平行于y軸的是(  )

A. (2,-4) B. (-2,4) C. (-4,2) D. (4,-2)

查看答案和解析>>

同步練習(xí)冊答案