【題目】我國(guó)是一個(gè)嚴(yán)重缺水的國(guó)家.為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)6噸時(shí),水價(jià)為每噸2元,超過(guò)6噸時(shí),超過(guò)的部分按每噸3元收費(fèi).該市某戶居民5月份用水x噸,應(yīng)交水費(fèi)y元.

1)若0x≤6,請(qǐng)寫出yx的函數(shù)關(guān)系式.

2)若x6,請(qǐng)寫出yx的函數(shù)關(guān)系式.

3)如果該戶居民這個(gè)月交水費(fèi)27元,那么這個(gè)月該戶用了多少噸水?

【答案】1當(dāng)0x≤6y=2x;(2x6時(shí),y=3x-6 (x6);(3這個(gè)月該用戶用了11噸水.

【解析】試題分析:(1)根據(jù)分段函數(shù)求解方法由總價(jià)=單價(jià)×數(shù)量,當(dāng)0≤x≤6,x6時(shí)就可以求出結(jié)論;

2)把y=27代入(1)的相應(yīng)解析式,求出x的值就可以得出結(jié)論.

試題解析:(1)由題意,得

當(dāng)0≤x≤6時(shí),y=2x;

當(dāng)x6時(shí)y=6×2+3x-6=3x-6

綜上所述,yx的函數(shù)關(guān)系式為:

;

2)當(dāng)y=27時(shí),

27=3x-6,

解得:x=11

答:這個(gè)月該戶用了11噸水.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,以O(shè)B為一邊作∠OBM=60°,且BO=BM,連接CM,OM.

(1)判斷AO與CM的大小關(guān)系并證明;

(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形是 

猜想證明:

2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1S2, 之間的數(shù)量關(guān)系,并說(shuō)明理由;

拓展探究:

3)如圖2,在矩形ABCD中,EAD邊上的一點(diǎn),且AB2=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1E的對(duì)應(yīng)點(diǎn),連接B1E1B1D1,若矩形ABCD的面積為4 m0),平行四邊形A1B1C1D1的面積為2m0),試求∠A1E1B1+A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為y (元).

(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;

(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年里約奧運(yùn)會(huì),中國(guó)女排的姑娘們?cè)诶善浇叹氈笇?dǎo)下,通過(guò)刻苦訓(xùn)練,取得了世界冠軍,為國(guó)爭(zhēng)光,如圖,已知排球場(chǎng)的長(zhǎng)度OD為18米,位于球場(chǎng)中線處球網(wǎng)的高度AB為2.43米,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.8米的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為7米時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系.

(1)當(dāng)球上升的最大高度為3.2米時(shí),求排球飛行的高度y(單位:米)與水平距離x(單位:米)的函數(shù)關(guān)系式.(不要求寫自變量x的取值范圍).

(2)在(1)的條件下,對(duì)方距球網(wǎng)0.5米的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1米,問(wèn)這次她是否可以攔網(wǎng)成功?請(qǐng)通過(guò)計(jì)算說(shuō)明.

(3)若隊(duì)員發(fā)球既要過(guò)球網(wǎng),又不出邊界,問(wèn)排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒(méi)出界)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D

求證:(1∠ECD=∠EDC;

2OC=OD;

3OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀,再因式分解:x44(x44x24)4x2(x22)2(2x)2(x22x2)(x22x2),按照這種方法把多項(xiàng)式x464因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4x2+mxy+9y2是一個(gè)完全平方式,則m=(  )

A.6B.12C.±6D.±12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a+b=5,ab=2,則a2+b2的值為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案