分析 過(guò)A作AN⊥x軸于N,過(guò)B作BM⊥x軸于M.設(shè)A(x,$\frac{\sqrt{6}}{x}$)(x>0),由點(diǎn)A在反比例函數(shù)y=$\frac{\sqrt{6}}{x}$上可得ON•AN=$\sqrt{6}$,由tan∠A=$\frac{BO}{AO}$=$\frac{\sqrt{3}}{3}$,再證明△MBO∽△NOA,可得$\frac{BM}{NO}$=$\frac{MO}{AN}$=$\frac{BO}{AO}$=$\frac{\sqrt{3}}{3}$,進(jìn)而可得BM=$\frac{\sqrt{3}}{3}$ON,OM=$\frac{\sqrt{3}}{3}$AN,然后再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)可得k=-OM•BM=-$\frac{\sqrt{3}}{3}$ON×$\frac{\sqrt{3}}{3}$AN=-$\frac{1}{3}$×$\sqrt{6}$=-$\frac{\sqrt{6}}{3}$.
解答 解:過(guò)A作AN⊥x軸于N,過(guò)B作BM⊥x軸于M.
∵第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y的圖象上,
∴設(shè)A(x,$\frac{\sqrt{6}}{x}$)(x>0),ON•AN=$\sqrt{6}$.
∵∠A=30°,
∴tan∠A=$\frac{BO}{AO}$=$\frac{\sqrt{3}}{3}$,
∵OA⊥OB,
∴∠BMO=∠ANO=∠AOB=90°,
∴∠MBO+∠BOM=90°,∠MOB+∠AON=90°,
∴∠MBO=∠AON,
∴△MBO∽△NOA,$\frac{BM}{NO}$=$\frac{MO}{AN}$=$\frac{BO}{AO}$=$\frac{\sqrt{3}}{3}$,
∴BM=$\frac{\sqrt{3}}{3}$ON,OM=$\frac{\sqrt{3}}{3}$AN.
又∵第二象限的點(diǎn)B在反比例函數(shù)y=$\frac{k}{x}$上,
∴k=-OM•BM=-$\frac{\sqrt{3}}{3}$ON×$\frac{\sqrt{3}}{3}$AN=-$\frac{1}{3}$×$\sqrt{6}$=-$\frac{\sqrt{6}}{3}$.
故答案為-$\frac{\sqrt{6}}{3}$.
點(diǎn)評(píng) 此題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),關(guān)鍵是掌握反比例函數(shù)圖象上的點(diǎn),橫縱坐標(biāo)之積等于k.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 無(wú)限小數(shù)是無(wú)理數(shù) | |
B. | 三角形的外角和等于360° | |
C. | 相反數(shù)等于它本身的數(shù)是0和1 | |
D. | 等邊三角形既是中心對(duì)稱圖形,又是軸對(duì)稱圖形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | $\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com