【題目】如圖所示的運算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結果為24,第二次輸出的結果為12,則第2013次輸出的結果為(   )

A.6B.3C.D.3×1003

【答案】A

【解析】

先分別計算出當x=48時,x=×48=24;當x=24時,x=×24=12;當x=12時,x=×12=6;當x=6時,x=×6=3;當x=3時,x+3=3+3=6,……,以后輸出的結果循環(huán)出現(xiàn)36,由于,所以第2013次輸出結果為6.

x=48時,x=×48=24,

x=24時,x=×24=12,

x=12時,x=×12=6,

x=6時,x=×6=3,

x=3時,x+3=3+3=6,

x=6時,x=×6=3,

從第三次輸出開始6,3循環(huán),

由于

所以第2013次輸出的結果為6.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了順利通過“國家文明城市”驗收,市政府擬對部分路段的人行道地磚、綠化帶、排水管等公用設施全面更新改造,根據(jù)市政建設的需要,需在40天內完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經調查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作只需10天完成.

(1)甲、乙兩個工程隊單獨完成此項工程各需多少天?

(2)若甲工程隊每天的費用是4.5萬元,乙工程隊每天的工程費用是2.5萬元,請你設計一種方案,既能按時完成工程,又能使工程費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD兩鄰邊的長m,n是關于x的方程的兩個實數(shù)根.

1)求k的取值范圍.

2)當k為何值時,四邊形ABCD的兩條對角線的長相等,且都等于,求出這時四邊形ABCD的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D、E、F分別是邊AB、AC、BC的中點,要判定四邊形DBFE是菱形,下列所添加條件不正確的是( 。

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在全運會射擊比賽的選拔賽中,運動員甲10次射擊成績的統(tǒng)計表和扇形統(tǒng)計圖如下:

命中環(huán)數(shù)

10

9

8

7

命中次數(shù)


3

2


1)根據(jù)統(tǒng)計表(圖)中提供的信息,補全統(tǒng)計表及扇形統(tǒng)計圖;

2)已知乙運動員10次射擊的平均成績?yōu)?/span>9環(huán),方差為12,如果只能選一人參加比賽,你認為應該派誰去?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某實驗中學八年級甲.乙兩班分別選5名同學參加學雷鋒讀書活動演講比賽,其預賽成績如圖所示:

(1)根據(jù)上圖填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

甲班

8.5

8.5

______

______

乙班

8.5

_____

10

1.6

(2)根據(jù)上表數(shù)據(jù)你認為哪班的成績較好?并說明你的理由;

(3)乙班小明說:我的成績是中等水平,你知道他是幾號選手?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出租車沿公路左右行駛,向左為正,向右為負,某天從A地出發(fā)后到收工回家所走的路線如下:單位:千米,,,,,

問收工時離出發(fā)點A多少千米?

若該出租車每千米耗油升,問從A地出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學習小組做摸球實驗,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復.下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

59

96

116

290

480

601

摸到白球的頻率

   

0.64

0.58

   

0.60

0.601

1)完成上表;

2摸到白球的概率的估計值是  (精確到0.1);

3)試估算口袋中黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某學校一教學樓高AB=15米,在它的正前方有一旗桿EF,從教學樓頂端A測得旗桿頂端E的俯角為30°,旗桿低端F到大樓前梯坎底邊的距離CF=12米,梯坎坡長BC=6.5米,梯坎坡度i=1:2.4,求旗桿EF的高度.(結果保留根號)

查看答案和解析>>

同步練習冊答案