【題目】利用配方法求出拋物線的頂點坐標(biāo)、對稱軸、最大值或最小值;若將拋物線先向左平移個單位,再向上平移個單位,所得拋物線的函數(shù)關(guān)系式為________.
【答案】
【解析】
先利用配方法把二次函數(shù)y=2x2-4x-1配方成y=a(x-h)2+k的形式,頂點坐標(biāo)是(h,k),對稱軸是直線x=h,a>0有最小值k.再根據(jù)“左加右減、上加下減”的平移規(guī)律寫出平移后的解析式.
y=2x2-4x-1=2(x2-2x+1)-1-2=2(x-1)2-3,
頂點坐標(biāo)為(1,-3),對稱軸為直線x=1,有最小值-3.
若將拋物線y=2x2-4x-1先向左平移3個單位,再向上平移2個單位,所得拋物線的函數(shù)關(guān)系式為y=2(x-1+3)2-3+2,即y=2(x+2)2-1,y=2x2+8x+7.
故答案是:y=2x2+8x+7.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為3的⊙O中,AB是直徑,AC是弦,且AC=4.過點O作直徑DE⊥AC,垂足為點P,過點B的直線交AC的延長線和DE的延長線于點F、G.
(1)求線段AP、CB的長;
(2)若OG=9,求證:FG是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,爸爸和小莉在兩處觀測氣球的仰角分別為α、β,兩人的距離(BD)是100 m, 如果爸爸的眼睛離地面的距離(AB)為1.6 m,小莉的眼睛離地面的距離(CD)為1.2 m,那么氣球的高度(PQ)是多少?(用含α、β的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,南沙區(qū)政府決定對區(qū)直屬機關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機抽查了其中50戶家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn)每戶用水量均在10﹣14噸/月范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計圖.
(1)請將條形統(tǒng)計圖補充完整;
(2)這50戶家庭月用水量的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),估計南沙區(qū)直屬機關(guān)300戶家庭中月平均用水量不超過12噸的約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2-2(m+1)x+m2=0.
(1)當(dāng)m取何值時,方程有兩個實數(shù)根?
(2)為m選取一個合適的整數(shù),使方程有兩個不相等的實數(shù)根,并求這兩個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線過軸上的點,且與拋物線相交于、兩點,點坐標(biāo)為.
求直線和拋物線所表示的函數(shù)表達式;
在拋物線上是否存在一點,使得?若不存在,說明理由;若存在,請求出點的坐標(biāo),與同伴交流.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,CF交AB于E,BD⊥CF,AF⊥CF,則下列結(jié)論:①∠ACF=∠CBD②BD=FC③FC=FD+AF④AE=DC中,正確的結(jié)論是____________(填正確結(jié)論的編號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x2+px﹣)(x2﹣3x+q)的積中不含x項與x3項
(1)求p、q的值;
(2)求代數(shù)式(﹣2p2q)2+(3pq)0+p2019q2020的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD⊥AC,CE⊥AB,垂足分別為D、E,BD、CE交于點O,且AO平分∠BAC,,那么圖中全等三角形有_________對.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com