(2013•南寧)在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問(wèn)題:
(1)寫出A、B兩地之間的距離;
(2)求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
(3)若兩人之間保持的距離不超過(guò)3km時(shí),能夠用無(wú)線對(duì)講機(jī)保持聯(lián)系,請(qǐng)直接寫出甲、乙兩人能夠用無(wú)線對(duì)講機(jī)保持聯(lián)系時(shí)x的取值范圍.
分析:(1)x=0時(shí)甲的y值即為A、B兩地的距離;
(2)根據(jù)圖象求出甲、乙兩人的速度,再利用相遇問(wèn)題求出相遇時(shí)間,然后求出乙的路程即可得到點(diǎn)M的坐標(biāo)以及實(shí)際意義;
(3)分相遇前和相遇后兩種情況求出x的值,再求出最后兩人都到達(dá)B地前兩人相距3千米的時(shí)間,然后寫出兩個(gè)取值范圍即可.
解答:解:(1)x=0時(shí),甲距離B地30千米,
所以,A、B兩地的距離為30千米;

(2)由圖可知,甲的速度:30÷2=15千米/時(shí),
乙的速度:30÷1=30千米/時(shí),
30÷(15+30)=
2
3
,
2
3
×30=20千米,
所以,點(diǎn)M的坐標(biāo)為(
2
3
,20),表示
2
3
小時(shí)后兩車相遇,此時(shí)距離B地20千米;

(3)設(shè)x小時(shí)時(shí),甲、乙兩人相距3km,
①若是相遇前,則15x+30x=30-3,
解得x=
3
5
,
②若是相遇后,則15x+30x=30+3,
解得x=
11
15
,
③若是到達(dá)B地前,則15x-30(x-1)=3,
解得x=
9
5
,
所以,當(dāng)
3
5
≤x≤
11
15
9
5
≤x≤2時(shí),甲、乙兩人能夠用無(wú)線對(duì)講機(jī)保持聯(lián)系.
點(diǎn)評(píng):本題考查了一次函數(shù)的應(yīng)用,主要利用了路程、速度、時(shí)間三者之間的關(guān)系,難點(diǎn)在于(3)要分情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南寧)在-2,1,5,0這四個(gè)數(shù)中,最大的數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南寧)小樂(lè)用一塊長(zhǎng)方形硬紙板在陽(yáng)光下做投影實(shí)驗(yàn),通過(guò)觀察,發(fā)現(xiàn)這塊長(zhǎng)方形硬紙板在平整的地面上不可能出現(xiàn)的投影是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•南寧)2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛(ài)的書籍”為主題,對(duì)學(xué)生最喜愛(ài)的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛(ài)科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南寧)如圖,在菱形ABCD中,AC為對(duì)角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案