【題目】已知關(guān)于x的一元二次方程x2﹣(m+2x+2m0

1)求證:不論m為何值,該方程總有兩個(gè)實(shí)數(shù)根;

2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求出以此兩根為邊長(zhǎng)的直角角形的周長(zhǎng)

【答案】1)證明見(jiàn)解析;

2)方程的另一根為2,圍成直角三角形的周長(zhǎng)為3+

【解析】

1)由根的判別式=m-22≥0,可證出:不論m為何值,該方程總有兩個(gè)實(shí)數(shù)根;
2)將x=1代入原方程可求出m的值,利用兩根之積等于可求出方程的另一個(gè)根,再利用勾股定理及三角形的周長(zhǎng)公式即可求出圍成直角三角形的周長(zhǎng).

1)證明:[﹣(m+2]24×1×2mm24m+4=(m22

∵(m22≥0,即≥0

∴不論m為何值,該方程總有兩個(gè)實(shí)數(shù)根.

2)解:將x1代入原方程,得:1﹣(m+2+2m0,

m1

∴方程的另一根為2

,

∴圍成直角三角形的周長(zhǎng)=1+2+3+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小李從市場(chǎng)上買(mǎi)回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能?chē)梢粋(gè)容積為35 m3的無(wú)蓋長(zhǎng)方體箱子,且此長(zhǎng)方體箱子的底面長(zhǎng)比寬多2m,現(xiàn)己知購(gòu)買(mǎi)這種鐵皮每平方米需30元錢(qián),問(wèn)小李購(gòu)回這張矩形鐵皮共花了多少元錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca0)的圖象過(guò)點(diǎn)(-2,0),對(duì)稱(chēng)軸為直線x=1.有以下結(jié)論:①abc>0;②8a+c>0;③若Ax1,m),Bx2,m)是拋物線上的兩點(diǎn),當(dāng)x=x1+x2時(shí),y=c;④若方程ax+2)(4-x=-2的兩根為x1,x2,且x1<x2,則-2x1<x2<4.

其中結(jié)論正確的有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=a(x-h)2+k的對(duì)稱(chēng)軸是直線x=3,經(jīng)過(guò)點(diǎn)(1,-2)和點(diǎn)(2,1.

(1)求函數(shù)的解析式;

(2)mn3A(m,y1)、B(ny2)(m<n<3)都在該拋物線上,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中,對(duì)角線AC、BD長(zhǎng)分別為1612,折疊紙片使點(diǎn)A落在DB上,折痕交AC于點(diǎn)P,則DP的長(zhǎng)為( 。

A. 3B. C. 3D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為正整數(shù),,,,,….,已知,則( ).

A. 4011B. 2020C. 2019D. 1806

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E、F分別在矩形ABCD的邊AD、AB上,連接EF,四邊形ABFE沿EF翻折能與四邊形重合,且ED相交,若,則  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交點(diǎn)C,拋物線過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線的解析式.

2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求的值.

3)點(diǎn)N是拋物線對(duì)稱(chēng)軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對(duì)稱(chēng)軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,NE,B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,ABx軸于A,反比例函數(shù)y=(x0)的圖象經(jīng)過(guò)點(diǎn)C,交AB于點(diǎn)D,已知AB=4,BC=

(1)若OA=4,求k的值.

(2)連接OC,若AD=AC,求CO的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案