如圖,O為矩形ABCD的對(duì)角線交點(diǎn),DF平分∠ADC交AC于點(diǎn)E,交BC于點(diǎn)F,∠BDF=15°,則∠COF=    °.
【答案】分析:根據(jù)DF平分∠ADC與∠BDF=15°可以計(jì)算出∠CDO=60°,再根據(jù)矩形的對(duì)角線相等且互相平分可得OD=OC,從而得到△OCD是等邊三角形,再證明△COF是等腰三角形,然后根據(jù)三角形內(nèi)角和定理解答即可.
解答:解:∵DF平分∠ADC,
∴∠CDF=45°,
∴△CDF是等腰直角三角形,
∴CD=CF,
∵∠BDF=15°,
∴∠CDO=∠CDF+∠BDF=45°+15°=60°,
在矩形ABCD中,OD=OC,
∴△OCD是等邊三角形,
∴OC=CD,∠OCD=60°,
∴OC=CF,∠OCF=90°-∠OCD=90°-60°=30°,
在△COF中,∠COF=(180°-30°)=75°.
故答案為:75.
點(diǎn)評(píng):本題考查了矩形的性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì),角平分線的定義,熟記各性質(zhì)并判斷出△OCD是等邊三角形是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,在等邊△ABC中,點(diǎn)D是BC邊的中點(diǎn),以AD為邊作等邊△ADE.
(1)求∠CAE的度數(shù);
(2)取AB邊的中點(diǎn)F,連接CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC,邊長(zhǎng)為2,AD是BC邊上的高.
(1)在△ABC內(nèi)部作一個(gè)矩形EFGH(如圖1),其中E、H分別在邊AB、AC上,F(xiàn)G在邊BC上.
①設(shè)矩形的一邊FG=x,那么EF=
 
.(用含有x的代數(shù)式表示)
②設(shè)矩形的面積為y,當(dāng)x取何值時(shí),y的值最大,最大值是多少?
(2)在圖2中,只用圓規(guī)畫出點(diǎn)E,使得上述矩形EFGH面積最大.寫出畫法,并保留作圖痕跡.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連接它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說(shuō)明你的理由.友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連接BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請(qǐng)說(shuō)明理由.若此時(shí)AB=3,BD=4
2
,求BC的長(zhǎng).
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長(zhǎng)8cm,底邊BC長(zhǎng)10cm,設(shè)DG=xcm,DE=ycm,則y關(guān)于x的函數(shù)關(guān)系式為
y=-
4
5
x+8
y=-
4
5
x+8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,在平行四邊形ABCD中,E、F為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:①△ABF≌△DCE;②四邊形ABCD是矩形.
(2)如圖2,已知△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長(zhǎng)BC到E,使CE=CD.
①請(qǐng)用尺規(guī)作圖的方法,過(guò)點(diǎn)D作DM⊥BE,垂足為M;(不寫作法,保留作圖痕跡)
②求證:BM=EM.

查看答案和解析>>

同步練習(xí)冊(cè)答案