【題目】已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H.
(1)如圖1,求證:PQ=PE;
(2)如圖2,G是圓上一點,∠GAB=30,連接AG交PD于F,連接BF,tan∠BFE=,求∠C的度數;
(3)如圖3,在(2)的條件下,PD=6,連接QG交BC于點M,求QM的長.
【答案】(1)證明見解析(2)30°(3) QM=
【解析】試題分析:
(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;
(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE= ,在Rt△BEF中,由tan∠BFE=可得BE= ,從而可得AB= ,則OP=OA= ,結合AE= 可得OE= ,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;
(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.
試題解析:
(1)如下圖1,連接OP,PB,∵CP切⊙O于P,
∴OP⊥CP于點P,
又∵BQ⊥CP于點Q,
∴OP∥BQ,
∴∠OPB=∠QBP,
∵OP=OB,
∴∠OPB=∠OBP,
∴∠QBP=∠OBP,
又∵PE⊥AB于點E,
∴PQ=PE;
(2)如下圖2,連接,∵CP切⊙O于P,
∴
∴
∵PD⊥AB
∴
∴
∴
在Rt中,∠GAB=30°
∴設EF=x,則
在Rt中,tan∠BFE=3
∴
∴
∴
∴
∴在RtPEO中,
∴30°;
(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,
∴,
∴四邊形POKQ為矩形,
∴QK=PO,OK//CQ,
∴30°,
∵⊙O 中PD⊥AB于E ,PD=6 ,AB為⊙O的直徑,
∴PE= PD= 3,
根據(2)得,在RtEPO中, ,
∴,
∴OB=QK=PO=6,
∴在Rt中, ,
∴,
∴QB=9,
在△ABG中,AB為⊙O的直徑,
∴AGB=90°,
∵BAG=30°,
∴BG=6, ABG=60°,
過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
∴QN=QB+BN=12,
∴在Rt△QGN中,QG=,
∵∠ABG=∠CBQ=60°,
∴BM是△BQG的角平分線,
∴QM:GM=QB:GB=9:6,
∴QM=.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,延長AC至點D,使CD=BC,連接BD,作CE⊥AB于點E,DF⊥BC交BC的延長線于點F,且CE=DF.
(1)求證:AB=AC.
(2)如果∠ABD=105°,求∠A的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 6×6 的網格中,四邊形 ABCD 的頂點都在格點上,每個格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標系.
(1)畫出四邊形 ABCD 關于 y 軸對稱和四邊形 A′B′C′D′(點 A、B、C、D的對稱點分別是點 A′B′C′D′.
(2)求 A、B′、B、C 四點組成和四邊形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知雙曲線y=(x<0)和y=(x>0),直線OA與雙曲線y=交于點A,將直線OA向下平移與雙曲線y=交于點B,與y軸交于點P,與雙曲線y=交于點C,S△ABC=6,=,則k=( )
A. ﹣6 B. ﹣4 C. 6 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小龍在全校隨機抽取了一部分同學就“我最喜愛的體育項目”進行了一次調查(每位同學必選且只選一項).下面是他通過收集的數據繪制的兩幅不完整的統計圖,請你根據圖中提供的信息,解答以下問題:
(1)小龍一共抽取了 名學生.
(2)補全條形統計圖;
(3)求“其他”部分對應的扇形圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC和△DEF(頂點為網格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示.
(1)分別寫出以下頂點的坐標:A( , );B( , ) ;C( , ).
(2)頂點A關于x軸對稱的點A′的坐標( , ),頂點C關于y軸對稱的點C′的坐標( , ).
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數是( 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,以點M(6,8)為圓心,2為半徑的圓上有一動點P,若A(﹣2,0),B(2,0),連接PA,PB,則當PA2+PB2取得最大值時,PO的長度為( )
A. 8 B. 10 C. 12 D. 10
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com