①②③
分析:根據(jù)平行四邊形的對角相等,等邊三角形的每一個角都是60°表示出∠CDF=∠EBC,平行四邊形的對邊相等,等邊三角形的三條邊都相等可得CD=EB,DE=BC,然后利用“邊角邊”證明△CDF和△EBC全等,判定①正確;再表示出∠EAF,可得∠CDF=∠EAF,判定②正確;同理求出△CDF和△EAF全等,根據(jù)全等三角形對應(yīng)邊相等可得CE=CF=EF,判定△ECF是等邊三角形,判定③正確;根據(jù)等邊三角形的性質(zhì),只有∠ABC=150°時,CG⊥AE.
解答:在?ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等邊三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
,
∴△CDF≌△EBC(SAS),故①正確;
在?ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正確;
同理可證△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等邊三角形,故③正確;
當CG⊥AE時,∵△ABE是等邊三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°無法求出,故④錯誤;
綜上所述,正確的結(jié)論有①②③.
故答案為:①②③.
點評:本題考查了平行四邊形的對邊相等,鄰角互補的性質(zhì),等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),綜合題但難度不大,仔細分析便不難求解.