如圖,已知Rt△ABC,D1是斜邊AB的中點,過D1作D1E1⊥AC于E1,連接BE1交CD1于D2;過D2作D2E2⊥AC于E2,連接BE2交CD1于D3;過D3作D3E3⊥AC于E3,…,如此繼續(xù),可以依次得到點D4,D5,…,Dn,分別記△BD1E1,△BD2E2,△BD3E3,…,△BDnEn的面積為S1,S2,S3,…Sn.則


  1. A.
    Sn=數(shù)學公式S△ABC
  2. B.
    Sn=數(shù)學公式S△ABC
  3. C.
    Sn=數(shù)學公式S△ABC
  4. D.
    Sn=數(shù)學公式S△ABC
D
分析:首先證明構成等差數(shù)列,而=2,故=2+1•(n-1)=n+1,則可以得到△ABC與△BDnEn面積之間的關系,從而求解.
解答:解:∵S△BDnEn=S△CDnEn•CEn,
∴DnEn=D1E1•CEn•,而D1E1=BC,CE1=AC,
∴S△BDnEn=BC••CEn=•CEn=BC•AC[]2
=S△ABC•[]2,
延長CD1至F使得D1F=CD1,
∴四邊形ACBF為矩形.
===,
對于=
兩邊均取倒數(shù),
=1+,
即是-=1,
構成等差數(shù)列.
=2,
=2+1•(n-1)=n+1,
∴S△BDnEn=S△ABC•[]2,
則Sn=S△ABC
故選D.
點評:本題主要考查了三角形面積的計算,正確證明構成等差數(shù)列是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點D,BD的垂直平分線分別交AB,BC于點E、F,CD=CG.
(1)請以圖中的點為頂點(不增加其他的點)分別構造兩個菱形和兩個等腰梯形.那么,構成菱形的四個頂點是
B,E,D,F(xiàn)
E,D,C,G
;構成等腰梯形的四個頂點是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC是⊙O的內接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點B作弦BF交AD于點精英家教網E,交⊙O于點F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點,PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點,連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點A做AE⊥AB,且AE=15,連接BE交AC于點P.
(1)求PA的長;
(2)以點A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習冊答案