【題目】在平面直角坐標系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點A順時針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點M旋轉(zhuǎn)后的對應點為M′,當AM′+DM取得最小值時,點M的坐標為( 。
A. (0, ) B. (0,) C. (0,) D. (0,3)
【答案】A
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得到AM=AM′,得出AM′+DM的最小值=AM+DM的最小值,作點D關于直線OB的對稱點D′,連接AD′交OB于M,則AD′=AM′+DM的最小值,過D作DE⊥x軸于E,解直角三角形得到DE=×3=,AE=,求出D(,),根據(jù)軸對稱的性質(zhì)得到D′(,),求出直線AD′的解析式為y=x+,于是得到結(jié)論.
∵把△AOB繞點A順時針旋轉(zhuǎn)120°,得到△ADC,點M是BO邊上的一點,
∴AM=AM′,
∴AM′+DM的最小值=AM+DM的最小值,
作點D關于直線OB的對稱點D′,連接AD′交OB于M,
則AD′=AM′+DM的最小值,
過D作DE⊥x軸于E,
∵∠OAD=120°,
∴∠DAE=60°,
∵AD=AO=3,
∴DE=×3=,AE=,
∴D(,),
∴D′( ,),
設直線AD′的解析式為y=kx+b,
∴,
∴
∴直線AD′的解析式為y=x+,
當x=0時,y=,
∴M(0,),
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( 。
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,且PA=4,PB=,PC=2,以下五個結(jié)論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點P到△ABC三邊的距離分別為PE,PF,PG,則有 其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=)
求把手端點A到BD的距離;
求CH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G是邊長為4的正方形ABCD的邊BC上的一點,矩形DEFG的邊EF過A,GD=5.
(1)指出圖中所有的相似三角形;
(2)求FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中有點B(-2,0)和y軸上的動點A(0,a),其中a>0,以點A為直角頂點在第二象限內(nèi)作等腰直角三角形ABC,設點C的坐標為(c,d).
(1)當a=4時,則點C的坐標為( , );
(2)動點A在運動的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請求出其值;若發(fā)生變化,請說明理由.
(3)當a=4時,在坐標平面內(nèi)是否存在點P(不與點C重合),使△PAB與△ABC全等?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6交y軸與點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=-x2+bx+c的表達式;
(2)連接GB、EO,當四邊形GEOB是平行四邊形時,求點G的坐標;
(3)①在y軸上存在一點H,連接EH、HF,當點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O于點E,連接BE、CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數(shù)為 時,四邊形AOCE是菱形;
②若AE=6,EF=4,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com