(2008•貴港)已知一條射線OA,若從點O再引兩條射線OB和OC,使∠AOB=80°,∠BOC=40°,則∠AOC等于( )
A.40°
B.60°或120°
C.120°
D.120°或40°
【答案】分析:利用角的和差關系計算,注意此題要分兩種情況.
解答:解:如果射線OC在∠AOB內(nèi)部,∠AOC=∠AOB-∠BOC=40°,
如果射線OC在∠AOB外部,∠AOC=∠AOB+∠BOC=120度.
故選D.
點評:要根據(jù)射線OC的位置不同,分類討論,分別求出∠AOC的度數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•貴港)已知一元二次方程x2-4x-5=0的兩個實數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點A、B的橫坐標(如下圖所示).
(1)求該拋物線的解析式;
(2)設(1)中的拋物線與y軸的交點為C,拋物線的頂點為D,請直接寫出點C、D的坐標并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為()].

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣西貴港市中考數(shù)學試卷(解析版) 題型:解答題

(2008•貴港)已知一元二次方程x2-4x-5=0的兩個實數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點A、B的橫坐標(如下圖所示).
(1)求該拋物線的解析式;
(2)設(1)中的拋物線與y軸的交點為C,拋物線的頂點為D,請直接寫出點C、D的坐標并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為()].

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2008•貴港)已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(14)(解析版) 題型:解答題

(2008•貴港)已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣西貴港市中考數(shù)學試卷(解析版) 題型:解答題

(2008•貴港)已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長.

查看答案和解析>>

同步練習冊答案