已知:如圖①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點.

(1)求證:①BE=CD;②△AMN是等腰三角形.

(2)在圖①的基礎上,將△ADE繞點A按順時針方向旋轉180°,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個結論是否仍然成立;

(3)在(2)的條件下,請你在圖②中延長ED交線段BC于點P.求證:△PBD∽△AMN.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖1所示,直線PA與x軸交于點A,與y軸交于點C(0,2),且S△AOC=4,直線BD與x軸交于點B,與y軸交于點D,直線PA與直線BD交于點P(2,m),點P在第一象限,連接OP.
(1)求點A的坐標;
(2)求直線PA的函數(shù)表達式;
(3)求m的值;
(4)若S△BOP=S△DOP,請你直接寫出直線BD的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、已知:如圖1所示,Rt△ABC與Rt△ADE中,∠ACB=∠AED=90°,AC=kBC,AE=kDE,點O為線段BD的中點.探索∠COE、∠ADE之間有怎樣的數(shù)量關系,證明你的結論.
說明:如果你反復探索沒有解決問題,可以選取(1)和(2)中的條件,選(1)中的條件完成解答滿分為7分;選(2)中的條件完成解答滿分為4分.
(1)點E在CA延長線上(如圖2);
(2)k=1,點E在CA延長線上(如圖3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖1所示,直線PA與x軸交于點A,與y軸交于點C(0,2),且S△AOC=4,直線BD與x軸交于點B,與y軸交于點D,直線PA與直線BD交于點P(2,m),點P在第一象限,連接OP.
(1)求點A的坐標;
(2)求直線PA的函數(shù)表達式;
(3)求m的值;
(4)若S△BOP=S△DOP,請你直接寫出直線BD的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河北省石家莊市中考數(shù)學一模試卷(解析版) 題型:解答題

已知,如圖1所示,直線PA與x軸交于點A,與y軸交于點C(0,2),且S△AOC=4,直線BD與x軸交于點B,與y軸交于點D,直線PA與直線BD交于點P(2,m),點P在第一象限,連接OP.
(1)求點A的坐標;
(2)求直線PA的函數(shù)表達式;
(3)求m的值;
(4)若S△BOP=S△DOP,請你直接寫出直線BD的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖1所示,Rt△ABC與Rt△ADE中,∠ACB=∠AED=90°,AC=kBC,AE=kDE,點O為線段BD的中點.探索∠COE、∠ADE之間有怎樣的數(shù)量關系,證明你的結論.
(1)點E在CA延長線上(如圖2);
(2)k=1,點E在CA延長線上(如圖3).

查看答案和解析>>

同步練習冊答案