精英家教網 > 初中數學 > 題目詳情
如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.
(1)①猜想圖1中線段BG、線段DE的長度關系及所在直線的位置關系,不必證明;
②將圖1中的正方形CEFG繞著點C按順時針方向旋轉任意角度α,得到如圖2情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并證明你的判斷.
精英家教網
(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖4為例簡要說明理由.
精英家教網
(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=
12
,求BE2+DG2的值.
分析:(1)①根據正方形的性質,顯然三角形BCG順時針旋轉90°即可得到三角形DCE,從而判斷兩條直線之間的關系;
②結合正方形的性質,根據SAS仍然能夠判定△BCG≌△DCE,從而證明結論;
(2)根據兩條對應邊的比相等,且夾角相等可以判定上述兩個三角形相似,從而可以得到(1)中的位置關系仍然成立;
(3)連接BE、DG.根據勾股定理即可把BE2+DG2轉換為兩個矩形的長、寬平方和.
解答:精英家教網解:(1)①BG⊥DE,BG=DE;
②∵四邊形ABCD和四邊形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.

(2)∵AB=a,BC=b,CE=ka,CG=kb,
BC
DC
=
CG
CE
=
b
a

又∵∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.

(3)連接BE、DG.
根據題意,得AB=3,BC=2,CE=1.5,CG=1,
∵BG⊥DE,∠BCD=∠ECG=90°
∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.
精英家教網
點評:此題綜合運用了全等三角形的判定和性質、相似三角形的判定和性質以及勾股定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網足分別為E、F,得四邊形DECF,設DE=x,DF=y.
(1)含y的代數式表示AE;
(2)y與x之間的函數關系式,并求出x的取值范圍;
(3)設四邊形DECF的面積為S,x在什么范圍時s隨x增大而增大.x在什么范圍時s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時,面積s最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點G,下列4個結論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案