【題目】據(jù)探測,月球表面白天陽光垂直照射的地方溫度高達(dá)127℃,而夜晚溫度可降低到零下183℃.根據(jù)以上數(shù)據(jù)推算,在月球上晝夜溫差有( )
A.56℃
B.-56℃
C.310℃
D.-310℃

【答案】C
【解析】解:127℃-(-183℃)=310℃ 。
故應(yīng)選: C 。

求月球上的晝夜溫差,用最高溫度減去最低溫度,然后用有理數(shù)的減法法則計算即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為切實(shí)減輕中小學(xué)生課業(yè)負(fù)擔(dān)、全面實(shí)施素質(zhì)教育,某中學(xué)對本校學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行調(diào)查. 在本校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查,發(fā)現(xiàn)被抽查的學(xué)生中,每天完成課外作業(yè)時間,最長不足120分鐘,沒有低于40分鐘的,且完成課外作業(yè)時間低于60分鐘的學(xué)生數(shù)占被調(diào)查人數(shù)的10%.現(xiàn)將抽查結(jié)果繪制成了一個不完整的頻數(shù)分布直方圖,如圖所示.

⑴這次被抽查的學(xué)生有 人;

⑵請補(bǔ)全頻數(shù)分布直方圖;

⑶被調(diào)查這些學(xué)生每天完成課外作業(yè)時間的中位數(shù)在 組(填時間范圍);

⑷若該校共有3600名學(xué)生,請估計該校大約有多少名學(xué)生每天完成課外作業(yè)時間在80分鐘以上(包括80分鐘)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式,屬于二元一次方程的是______________;

① xy +2x -y =7 ;② 4x+1=x-y ;③+y=5 ;④ x=y ;⑤ x2-y2=2

⑥ 6x-2y ;⑦ x+y+z=1 ;⑧ y(y-1)=2y2-y2+x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市有近4萬名考生參加中考,為了解這些考生的數(shù)學(xué)成績,從中抽取1000名考生的數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,以下說法正確的是(
A.這1000名考生是總體的一個樣本
B.近4萬名考生是總體
C.每位考生的數(shù)學(xué)成績是個體
D.1000名學(xué)生是樣本容量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人只帶了2元和5元這兩種貨幣,他要買一件27元的商品,而商店沒有零錢找,他想恰好付27元,那么他的付款方式有________種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC、∠ACB的平分線BD,CE相交于O點(diǎn),且BD交AC于點(diǎn)D,CE交AB于點(diǎn)E,某同學(xué)分析圖形后得出以下結(jié)論,上述結(jié)論一定正確的是______(填代號).

①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a﹣b=2,b﹣c=﹣3,則a﹣c等于(
A.1
B.﹣1
C.5
D.﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀資料:我們把頂點(diǎn)在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如下左圖∠ABC所示。

同學(xué)們研究發(fā)現(xiàn):P為圓上任意一點(diǎn),當(dāng)弦AC經(jīng)過圓心O時,且AB切⊙O于點(diǎn)A,此時弦切角∠CAB=∠P(圖甲)

證明:∵AB切⊙O于點(diǎn)A, ∴∠CAB=90°, 又∵AC是直徑, ∴∠P=90° ∴∠CAB=∠P

問題拓展:若AC不經(jīng)過圓心O(如圖乙),該結(jié)論:弦切角∠CAB=∠P還成立嗎?

請說明理由。

知識運(yùn)用:如圖,AD是△ABC中∠BAC的平分線,經(jīng)過點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB、AC分別相交于E、F。 求證:EF∥BC。

查看答案和解析>>

同步練習(xí)冊答案