已知點D為等腰△ABC的底邊BC的中點,P為AB線段內部的任意一點,設BP的垂直平分線與直線AD交于點E,PC與AD交于點F.求證:直線EP是△APF的外接圓的切線.
證明:∵EG垂直平分BP,
∴EP=BE,
∵AD是等腰三角形ABC底邊上的高,
∴AD垂直平分BC,
∴BE=EC,
∴以E為圓心、EB為半徑作圓E,則點P、C都在該圓的圓周上,
∴在Rt△ABD中,∠PAE=∠BAE=90°-∠ABC=90°-
1
2
∠PEC=∠EPC,
∵在等腰三角形EPC中,∠EPC=90°-
1
2
∠PEC,
∴∠PAE=∠EPC,
∴EP是△APF的外接圓的切線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:⊙O是ABC的內切圓,切點分別為D,E,F(xiàn),連接DF,作EP⊥DF,垂足為點P,連接PB,PC.求證:∠DPB=∠FPC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,內切圓O與邊BC、AC、AB分別切于D、E、F.
(1)求證:BF=CE;
(2)若∠C=30°,CE=2
3
,求AC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知AD、BE是△ABC的中線,AD、BE相交于G,若BE=9cm,則BG=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們給出如下定義:三角形三條中線的交點稱為三角形的重心.一個三角形有且只有一個重心.可以證明三角形的重心與頂點的距離等于它與對邊中點的距離的兩倍.
可以根據(jù)上述三角形重心的定義及性質知識解答下列問題:
如圖,∠B的平分線BE與BC邊上的中線AD互相垂直,并且BE=AD=4
(1)猜想AG與GD的數(shù)量關系,并說明理由;
(2)求△ABC的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在邊長為2的正三角形中,將其內切圓和三個角切圓(與角兩邊及三角形內切圓都相切的圓)的內部挖去,則此三角形剩下部分(陰影部分)的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某地有四個村莊E,F(xiàn),G,H(其位置如圖所示),現(xiàn)擬建一個電視信號中轉站,信號覆蓋的范圍是以發(fā)射臺為圓心的圓形區(qū)域.為了使這四個村莊的居民都能接收到電視信號,且使中轉站所需發(fā)射功率最。▓A形區(qū)域半徑越小,所需功率越小),此中轉站應建在( 。
A.線段HF的中點處B.△GHE的外心處
C.△HEF的外心處D.△GEF的外心處

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

解答題:
(1)設互為補角的兩個角的差為60°,求較小角的余角.
(2)設一個角的補角是這個角的余角的5倍,求這個角的度數(shù).
(3)如圖,∠1=∠2,∠EMB=55°,試求∠DNF的度數(shù).

(4)如圖,△ABC三個頂點分別表示三個小區(qū),AB,BC,AC是連接三個小區(qū)的已有自來水管道,某工程隊現(xiàn)在要△ABC在內部(包括邊上)建一個自來水公司M,M到AB,BC,AC的距離和計為L,已知AB=4,BC=5,AC=6,問自來水供應M在哪個位置,工程對才有最大的經濟效益(即L最。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,BA=BC,∠B=120°,AB的垂直平分線MN交AC于D,求證:AD=
1
2
DC.

查看答案和解析>>

同步練習冊答案