已知點(diǎn)A(0,2),將OA繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°后得OB,則B點(diǎn)的坐標(biāo)是   
【答案】分析:根據(jù)點(diǎn)A的坐標(biāo)求出OA的長度,再根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小可得OB=OA,過點(diǎn)B作BC⊥x軸于點(diǎn)C,根據(jù)旋轉(zhuǎn)角為30°可得∠OBC=30°,再根據(jù)30°角所對的直角邊等于斜邊的一半求出OC,利用勾股定理列式求出BC的長度,然后寫出點(diǎn)B的坐標(biāo)即可.
解答:解:如圖,∵點(diǎn)A(0,2),
∴OA=2,
∵OB是OA旋轉(zhuǎn)得到,
∴OB=OA,
過點(diǎn)B作BC⊥x軸于點(diǎn)C,
∵旋轉(zhuǎn)角為30°,
∴∠OBC=∠AOB=30°,
∴OC=OB=×2=1,
在Rt△BOC中,根據(jù)勾股定理,BC===,
所以,點(diǎn)B的坐標(biāo)為(-1,).
故答案為:(-1,).
點(diǎn)評:本題考查了坐標(biāo)與圖形的性質(zhì)-旋轉(zhuǎn),根據(jù)旋轉(zhuǎn)變換的性質(zhì)求出OB的長度,作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、已知點(diǎn)A(m,2m)和點(diǎn)B(3,m2-3),直線AB平行于x軸,則m等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知點(diǎn)A,B,C在⊙O上,AC∥OB,∠BOC=40°,則∠ABO=
20
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知點(diǎn)A1,A2,A3是拋物線y=
1
2
x2上的三點(diǎn),線段A1B1,A2B2,A3B3都垂直于x軸,垂足分別為點(diǎn)B1,B2,B3,延長線段B2A2交線段A1A3于點(diǎn)C.
(1)在圖(1)中,若點(diǎn)A1,A2,A3的橫坐標(biāo)依次為1,2,3,求線段CA2的長;
(2)若將拋物線改為y=
1
2
x2-x+1,如圖2,點(diǎn)A1,A精英家教網(wǎng)2,A3的橫坐標(biāo)依次為三個(gè)連續(xù)整數(shù),其他條件不變,求線段CA2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、對于點(diǎn)O、M,點(diǎn)M沿MO的方向運(yùn)動(dòng)到O左轉(zhuǎn)彎繼續(xù)運(yùn)動(dòng)到N,使OM=ON,且OM⊥ON,這一過程稱為M點(diǎn)關(guān)于O點(diǎn)完成一次“左轉(zhuǎn)彎運(yùn)動(dòng)”.正方形ABCD和點(diǎn)P,P點(diǎn)關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P1,P1關(guān)于B左轉(zhuǎn)彎運(yùn)動(dòng)到P2,P2關(guān)于C左轉(zhuǎn)彎運(yùn)動(dòng)到P3,P3關(guān)于D左轉(zhuǎn)彎運(yùn)動(dòng)到P4,P4關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P5,….
(1)請你在圖中用直尺和圓規(guī)在圖中確定點(diǎn)P1的位置;
(2)連接P1A、P1B,判斷△ABP1與△ADP之間有怎樣的關(guān)系?并說明理由.
(3)以D為原點(diǎn)、直線AD為y軸建立直角坐標(biāo)系,并且已知點(diǎn)B在第二象限,A、P兩點(diǎn)的坐標(biāo)為(0,4)、(1,1),請你推斷:P4、P2009、P2010三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,2)、B(4,0),點(diǎn)C、D分別在直線x=1與x=2上,且CD∥x軸,則AC+CD+DB的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案