讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關(guān)系.
第一步:數(shù)軸上兩點連線的中點表示的數(shù).自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是________. 再試幾個,我們發(fā)現(xiàn):數(shù)軸上連接兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù).
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(________,________ )(用x1,y1,x2,y2表示),AEFB是矩形時也可以.我們的結(jié)論是:平面直角坐標系中連接兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù).
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關(guān)系(如圖②)在平面直角坐標系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對角線交點Q的坐標可以表示為Q(________,________),也可以表示為Q(________,________ ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是________和________. 我們的結(jié)論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的________.

1                            x1+x3=x2+x4    y1+y3=y2+y4    和相等
分析:畫出數(shù)軸即可求出第一步;先求出N是EF中點,求出N的橫坐標,根據(jù)梯形的中位線性質(zhì)求出縱坐標即可;根據(jù)平行四邊形性質(zhì)推出Q是AC和BD的中點,根據(jù)以上結(jié)論即可求出答案.
解答:第一步:故答案為:1,如圖:
解:∵MN是梯形AEFB的中位線,AE∥BF,
∴E、F的橫坐標分別是x1,x2
由第一步得出:N和M的橫坐標是:,MN==,即是M的縱坐標,
故答案為:
解:與第二步解法類似,根據(jù)平行四邊形的性質(zhì)得出QA=QC,QB=QD,推出:(,)或,
故答案為:(),().
解:由第三步推出x1+x3=x2+x4 y1+y3=y2+y4,
故答案為:x1+x3=x2+x4 y1+y3=y2+y4,和相等.
點評:本題考查了平行四邊形性質(zhì),梯形的中位線性質(zhì),點的坐標的應(yīng)用,解此題的關(guān)鍵是得出規(guī)律,能通過作題培養(yǎng)學(xué)生分析問題和解決問題的能力,同時也培養(yǎng)了學(xué)生的理解能力和觀察問題的能力,題型較好.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關(guān)系.
第一步:數(shù)軸上兩點連線的中點表示的數(shù).自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是
1
1
. 再試幾個,我們發(fā)現(xiàn):數(shù)軸上連接兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù).
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(
x1+x2
2
x1+x2
2
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形時也可以.我們的結(jié)論是:平面直角坐標系中連接兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù).
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關(guān)系(如圖②)在平面直角坐標系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對角線交點Q的坐標可以表示為Q(
x1+x3
2
x1+x3
2
,
y1+y3
2
y1+y3
2
),也可以表示為Q(
x2+x4
2
x2+x4
2
,
y2+y4
2
y2+y4
2
 ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結(jié)論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的
和相等
和相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關(guān)系。

第一步:數(shù)軸上兩點連線的中點表示的數(shù)

自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                。 再試幾個,我們發(fā)現(xiàn):

數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。

第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)

為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標系中連結(jié)兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù)。

      

          圖①                    圖②

第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關(guān)系(如圖②)

在平面直角坐標系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),

D(x4,y4),則其對角線交點Q的坐標可以表示為Q(           ,         ),也可以表示為Q(                       ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結(jié)論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的              。

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關(guān)系。
第一步:數(shù)軸上兩點連線的中點表示的數(shù)
自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                。 再試幾個,我們發(fā)現(xiàn):
數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)
為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(             ,                     )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標系中連結(jié)兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù)。
    
圖①                    圖②
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關(guān)系(如圖②)
在平面直角坐標系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),則其對角線交點Q的坐標可以表示為Q(            ,         ),也可以表示為Q(             ,          ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結(jié)論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的              。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省呂良中學(xué)八年級第一學(xué)期第二次階段檢測數(shù)學(xué)卷.doc 題型:解答題

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關(guān)系。
第一步:數(shù)軸上兩點連線的中點表示的數(shù)
自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                。 再試幾個,我們發(fā)現(xiàn):
數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)
為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標系中連結(jié)兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù)。
    
圖①                    圖②
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關(guān)系(如圖②)
在平面直角坐標系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),則其對角線交點Q的坐標可以表示為Q(            ,         ),也可以表示為Q(             ,          ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結(jié)論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的              。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省八年級第一學(xué)期第二次階段檢測數(shù)學(xué)卷 題型:選擇題

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關(guān)系。

第一步:數(shù)軸上兩點連線的中點表示的數(shù)

自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                 。 再試幾個,我們發(fā)現(xiàn):

數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。

第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)

為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(                                    )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標系中連結(jié)兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù)。

      

          圖①                     圖②

第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關(guān)系(如圖②)

在平面直角坐標系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),

D(x4,y4),則其對角線交點Q的坐標可以表示為Q(            ,          ),也可以表示為Q(              ,           ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                        。 我們的結(jié)論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的              。

 

 

查看答案和解析>>

同步練習(xí)冊答案